Cellulase production and morphology of Trichoderma reesei in different experimental conditions

Authors

  • Rahela CARPA Babeş-Bolyai University Cluj-Napoca, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 M. Kogălniceanu Str., Cluj-Napoca, Romania. *Corresponding author: k_hella@yahoo.com https://orcid.org/0000-0001-8974-1718
  • Alin CÂNDEA Babeş-Bolyai University Cluj-Napoca, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 M. Kogălniceanu Str., Cluj-Napoca, Romania.
  • Alexei REMIZOVSCHI Babeş-Bolyai University Cluj-Napoca, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 M. Kogălniceanu Str., Cluj-Napoca, Romania. https://orcid.org/0000-0003-4273-6051
  • Lucian BARBU-TUDORAN Babeş-Bolyai University Cluj-Napoca, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 M. Kogălniceanu Str., Cluj-Napoca, Romania. https://orcid.org/0000-0003-0360-016X
  • Maria Cornelia MAIOR Babeş-Bolyai University Cluj-Napoca, Faculty of Biology and Geology, Department of Molecular Biology and Biotechnology, 1 M. Kogălniceanu Str., Cluj-Napoca, Romania.

DOI:

https://doi.org/10.24193/subbbiol.2018.2.09

Keywords:

cellulase activity, off-corn culture media, Trichoderma reesei.

Abstract

Cellulases production involving alternative substrates has been intensely researched, because it offers perspectives for lowering the costs for enzyme production, costs which are a major obstacle for the development of this field. The concentration, turnout, effectiveness of the enzyme production depends on the content of culture medium. In order to find a way to increase cellulase production, two culture media with different cellulosic substrates in submerged culture experiments were tested. We used a promising off-corn growth media that was efficient and the cellulases output due to substrate action was calculated. The reduction of the sugars released by the enzyme was noticed. On off-corn medium the measurements reached 0.188 mg of released glucose/mL/min/50ºC, while on PSM medium the strains reached the release of only 0.118 mg glucose/mL/min/50ºC. The abundance of the fungi and the pellet morphology were microscopically compared by optic and electronic means. Mycelia with hyphae and spores were also visible in these circumstances, suggesting that when the environment of the mycelium alters, part of the mycelium autolyses and spores are released to propagate. The present study also included the use of newly synthesized cellulases in order to obtain a plant protoplast culture. This study proves that cellulolytic enzymes with further application in laboratory can be provided by less expensive techniques.

 Carpa et al (PDF)

References

Ahamed, A., Vermette P. (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal 40: 399–407

Carpa, R., Drăgan-Bularda, M., Muntean, V. (2014) Microbiologie Generală – Lucrări practice, Ed. Presa Universitară Clujeană, Cluj-Napoca, 217 p

Carroll, A., Somerville, C. (2009) Cellulosic biofuels. Annu Rev Plant Biol 60: 165–182

Bharathiraja, B., Sowmya, V., Sridharan, S., Yuvaraj, D., Jayamuthunagai, J., Praveenkumar, R. (2017) Biodiesel production from microbial oil derived from wood isolate Trichoderma reesei, Bioresource Technology, Volume 239: 538-541

Foreman, P. K., Brown, D., Dankmeyer, L., Dean, R., Diener, S., Dunn-Coleman, N. S., Goedegebuur, F., Houfek, T. D., England, G. J., Kelley, A. S., Meerman, H. J., Mitchell, T., Mitchinson, C., Olivares, H. A., Teunissen, P. J. M., Yao, J., Ward, M., (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem. 278: 31988–31997

Gao, D. H., Uppugundla, N., Chundawat, S. P., Yu, X. R., Hermanson, S., Gowda, K., Brumm, P., Mead, D., Balan, V., Dale, B. E. (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol. Biofuels 4: 1–11

Göbel, M., Kranz, O. H., Kaschabek, S. R., Schmidt, E., Pieper, D. H., Reineke, W. (2004) Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters. Archives of Microbiology 182 (2-3): 147-156

Gupta, V. K., Kubicek, C. P., Berrin, J. G., Wilson, D. W., Couturier, M., Berlin, A., Filho, E. X. F., Ezeji, T. (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem. Sci. 41, 633–645

Häkkinen, M., Arvas, M., Oja, M., Aro, N., Penttilä, M., Saloheimo, M., Pakula, T. M. (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb. Cell Fact. 11, 134

Li, C., Yang, Z., Zhang, R. H. C., Zhang, D., Chen, S., Ma, L. (2013) Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis, Journal of Biotechnology 168, 470–477

Jourdier, E., Ben, Chaabane, F., Poughonb, L., Larrocheb, C., Monot, F. (2012) Simple kinetic model of cellulase production by Trichoderma reesei for productivity or yield maximization. Chemical Engineering Transaction 27: 313-318

Kubicek, P. C. (2013) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. Journal of Biotechnology 163 (2), 133-142

Ma, L., Li, C., Yang, Z., Jia, W., Zhang, D., Chen, S. (2013) Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation, Journal of Biotechnology 166, 192–197

Martinez, D., Berka, R. M., Henrissat, B., Saloheimo, M., Arvas, M., Baker, S. E., Chapman, J., Chertkov, O., Coutinho, P. M., Cullen, D., Danchin, E. G., Grigoriev, I. V., Harris, P., Jackson, M., Kubicek, C. P., Han, C. S., Ho, I., Larrondo, L. F., de Leon, A. L., Magnuson, J. K., Merino, S., Misra, M., Nelson, B., Putnam, N., Robbertse, B., Salamov, A. A., Schmoll, M., Terry, A., Thayer, N., Westerholm-Parvinen, A., Schoch, C. L., Yao, J., Barabote, R., Nelson, M. A., Detter, C., Bruce, D., Kuske, C. R., Xie, G., Richardson, P., Rokhsar, D. S., Lucas, S. M., Rubin, E. M., Dunn-Coleman, N., Ward, M., Brettin, T. S. (2008) Genome sequencing and analysis of the biomassdegrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553–560

Mandels, M., Reese, E. T. (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals, J. Bacteriol. 73, 269–278

Mandels, M. (1975) Cellulose as a chemical and energy resource, Biotechnol. Bioeng. Symp. NY 5, 81

Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiologia plantarum. 15: 473-497

Muthuvelayudham, R., Viruthagiri, T. (2006) Fermentative production and kinetics of cellulose protein on Trichoderma reesei using sugar cane bagasse and rice straw, Afr. J. Biotechnol. 5 (20), 1873–1881

Peciulyte, A., Anasontzis, G. E., Karlström, K., Larsson, P. T., Olsson, L. (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates, Fungal Genetics and Biology 72: 64–72

Peterson, R., Nevalainen, H. (2012) Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology 158: 58–68

Shafique, S., Bajwa, R., Shafique, S. (2009) Cellulase biosynthesis by selected Trichoderma species, Pak. J. Bot., 41(2): 907-916

Somerville, C., Bauer, S., Brininstool, G., Facette, M., Hamann, T., Milne J., Osborne, E., Paredez, A., Persson, S., Raab, T., Vorwerk, S., Youngs, H. (2004) Toward a systems approach to understanding plant cell walls. Science 306: 2206–2211

Schuster, A., Schmoll, M. (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799. doi: 10.1007/s00253-010-2632-1

Sukumaran, R.K., Singhania, R.R., Pandey, A. (2005) Microbial cellulases - Production, applications and challenges. Journal of Scientific & Industrial Research 64, 832-844.

Xia, Y., Yang, L., Xia L. (2018) High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase, Process Biochemistry, 70: 55–60

Zhang, J., Zhang, Y., Zhong, Y., Qu, Y., Wang, T. (2012) Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS ONE 7(11): e48786. doi:10.1371/journal.pone.0048786

Zhang, X., Zi, L., Ge, X., Li, Y., Liu, C., Bai, F. (2017) Development of Trichoderma reesei mutants by combined mutagenesis and induction of cellulase by low-cost corn starch hydrolysate, Process Biochem. 54: 96–101

Zhang, F., Zhao X., Bai, F. (2018) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1, Bioresource Technology, 247: 676-683

Zheng, W., Chen, X., Xue, Y., Hu, J., Gao, M.T., Fai Tsang, Y. (2017) The influence of soluble polysaccharides derived from rice straw upon cellulase production by Trichoderma reesei, Process Biochemistry, 61: 130–136

Wang, W., Chen, Y., Wei, D. Z., (2017) Copper-mediated on-off control of gene expression in filamentous fungus Trichoderma reesei, J. Microbiological Methods, 143:63-65.

Published

2018-12-17

Issue

Section

Research article