Breathing chemicals: a review of air pollution over the years

Authors

  • Alex-Ionuț TOTOLICI Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Silvia MITREA Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania. *Corresponding author: silviamitrea14@gmail.com
  • Anghel Tudor CIOLOCA Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Andrei LUPU Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Patricia Mercedes MÓRICZ Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Daria MUNTEAN Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Raluca NEGRE Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Andra TOPÎRCEANU Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Mara ȚOC Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Dumitrana IORDACHE Department of Molecular Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Doctoral School of Integrative Biology, Babeș-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0002-9811-270X

DOI:

https://doi.org/10.24193/subbbiol.2022.1.10

Keywords:

air pollution, biosensors, greenhouse gases, human health.

Abstract

Air is necessary for human survival and the preservation of the environment. The scientific community is concerned about the ongoing rapid expansion of the population, which uses resources faster, and thus the accumulation of an enormous amount of waste will gradually worsen the air quality. The change in the pollutants released in the atmosphere became more complex throughout human history, and they were released in huge quantities. The sources of air pollution vary greatly – from burning fuel, the household, agricultural or mining activities to natural disasters or significant industrial accidents. New techniques that monitor the air composition are being developed to ensure air quality control. The population exposed to these harmful compounds is predisposed to various health concerns, including skin, cardiovascular, brain, blood, and lung illnesses. The substances also contribute to global warming, acid rains and ozone depletion. During the COVID-19 pandemic, it was noticed that reducing human activities causing pollution leads to improved air quality, which shows that long-term solutions can also be found. This paper aims to offer an overview of the air pollution problems persisting around the globe and present the current state, causes and evolution of air pollution. Some of the solutions we propose in this article include energy-saving, public transportation and material recycling. We also emphasize the need to develop new technologies to control the air quality and implement a sustainable approach.

Totolici et al (PDF)

Article history: Received: 1 April 2022; Revised: 21 April 2022; Accepted: 27 May 2022; Available online: 30 June 2022.

References

Afrifa, G. A., Tingbani, I., Yamoah, F. & Appiah, G. (2020). Innovation input, governance and climate change: Evidence from emerging countries. Technol. Forecast. Soc. Change, 161, 1-13.

Amegah, A. K. & Agyei-Mensah, S. (2016). Urban air pollution in Sub-Saharan Africa: Time for action. Environ. Pollut., 220, 738-743.

Apte, K. & Salvia, S. (2016). Household air pollution and its effects on health, F1000Research, 5.

Armaroli, N. & Balzani, V. (2011). The legacy of fossil fuels. Chem. Asian J., 6(3), 768-784.

Bai, L., Wang, J., Ma, X. & Lu, H. (2018). Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health, 15, 780.

Banerjee, R. (2015). Importance of waste to energy conversion. Int. J. Innov. Res. Adv. Eng., 2, 45-52.

Barnes, P. W., Williamson, C. E., Lucas, R. M., Robinson, S. A., Madronich, S., Paul, N. D., Bornman, J. F., Bais, A. F., Sulzberger, B., Wilson, S. R., Andrady, A. L., McKenzie, R. L., Neale, P. J., Austin, A. T., Bernhard, G. H., Solomon, K. R., Neale, R. E., Young, P. J., Norval, M. & Zepp, R. G. (2019). Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future. Nat. Sustain., 2(7), 569–579.

Barua, S. & Nath, S.D. (2021). The impact of COVID-19 on air pollution: evidence from global data. J. Clean. Prod., 126755.

Bel, G. & Holst, M., 2018. Evaluation of the impact of bus rapid transit on air pollution in Mexico City. Transp. Policy, 63, 209-220.

Berman, J.D. & Ebisu, K. (2020). Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ., 739, 139864.

Bernard, S. M., Samet, J. M., Grambsch, A., Ebi, K. L. & Romieu, I. (2001). The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect., 109(suppl 2), 199-209.

Bray, C.D., Battye, W. H. & Aneja, V. P. (2019). The role of biomass burning agricultural emissions in the Indo-Gangetic Plains on the air quality in New Delhi, India. Atmos. Environ., 218, 116983.

Burns, D. A., Aherne, J., Gay, D. A. & Lehmann, C. M. B. (2016). Acid rain and its environmental effects: Recent scientific advances. Atmos. Environ., 146, 1–4.

Casper, J. K. (2010). Fossil fuels and pollution: the future of air quality. Ed. Facts on File Infobase Publishing, 12-14.

Chandrappa, R. & Kulshrestha, U. C. (2015). Sustainable air pollution management: Theory and practice. Sustainable Air Pollution Management: Theory and Practice, 1–379.

Charlesworth, S. M. & Booth, C. A. (Eds.). (2019). Urban Pollution: Science and Management. John Wiley & Sons.

Chen, Y. & Whalley, A. (2012). Green infrastructure: The effects of urban rail transit on air quality. Econ. J.: Econ. Policy., 4(1), 58-97.

Chino, M., Nakayama, H., Nagai, H., Terada, H., Katata, G. & Yamazawa, H. (2011). Preliminary estimation of release amounts of 131i and 137cs accidentally discharged from the fukushima daiichi nuclear power plant into the atmosphere. J. Nucl. Sci. Technol., 48(7), 1129–1134.

Cooper, C. D. & Alley, F. C. (2010). Air pollution control: A design approach. Waveland press.

Covert, T., Greenstone, M., & Knittel, C. R. (2016). Will we ever stop using fossil fuels?.

J Econ Perspect., 30(1), 117-38.

Cross, E. S., Williams., L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L. & Jayne J.T. (2017). Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements. Atmos. Meas. Tech., 10(9), 3575-3588.

Daly, A. & Zannetti, P. (2007). An introduction to air pollution–definitions, classifications and history. The Arab School for Science and Technology & The EnviroComp Institute, 1-14.

D'amato, G., Pawankar, R., Vitale, C., Lanza, M., Molino, A., Stanziola, A. & D'amato, M. (2016). Climate change and air pollution: effects on respiratory allergy. Allergy Asthma Immunol. Res., 8(5), 391.

Dickerson, R.R., Kondragunta, S., Stenchikov, G., Civerolo, K.L., Doddridge, B.G. & Holben, B.N. (1997). The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science, 827-830.

Dimitroulopoulou, C., Trantallidi, M., Carrer, P., Efthimiou, G. C. & Bartzis, J. G. (2015). EPHECT II: Exposure assessment to household consumer products. Sci. Total Environ., 536, 890–902.

Domingo, J. L. & Rovira, J. (2020). Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res., 1-7.

Europa Liberă România. 2022. România fumegă. De ce nu reușesc autoritățile să oprească incendierile intenționate. [online] Available at: <https://romania.europalibera.org/a/incendii-de-vegetatie-intentionate-/

html?fbclid=IwAR3RY0AZVbSZ4PAYjoIXJHQse_-S9-lDmhr8mt6QQrYinNwXy8ZDnuArbro> [Accessed 31 March 2022].

Ezzati M. & Kammen, D. M. (2002). Household energy, indoor air pollution, and health in developing countries: Knowledge base for effective interventions, Annu. Rev. Energy Environ., 27(1), 233-270.

Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S. & Fava, F. (2015). Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol., 32(1), 147-156.

Ghahremanloo, M., Lops, Y., Choi, Y. & Mousavinezhad, S. (2021). Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ., 754, 142226.

Ghose, M. K. & Majee, S. R. (2000). Sources of air pollution due to coal mining and their impacts in Jharia coalfield. Environ. Int., 26(1-2), 81-85.

Ghose, M. K. & Majee, S. R. (2001). Air pollution caused by opencast mining and its abatement measures in India. J. Environ. Manage., 63(2), 193-202.

Gibson, J. (2015). Air pollution, climate change, and health. Lancet Oncol., 16(6), 269.

Giovanis, E. (2014). Relationship between Recycling Rate and Air Pollution in the State of Massachusetts, Munich Personal RePEc Archive, 1-25.

Grennfelt, P., Engleryd, A., Forsius, M., Hov, Rodhe, H. & Cowling, E. (2020). Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio, 49(4), 849–864.

Harlan, S. L. & Ruddell, D. M. (2011). Climate change and health in cities: impacts of heat and air pollution and potential co-benefits from mitigation and adaptation. Curr. Opin. Environ. Sustain, 3(3), 126-134.

Honscha, L. C., Penteado, J. O., de Sá Gama, V., da Silva Bonifácio, A., Aikawa, P., Dos Santos, M. & da Silva Júnior, F. M. R. (2022). Health impact assessment of air pollution in an area of the largest coal mine in Brazil. Environ. Sci. Pollut. Res., 29(10), 14176-14184.

Hood, C., MacKenzie, I., Stocker, J., Johnson, K., Carruthers, D., Vieno, M. & Doherty, R. (2018). Air quality simulations for London using a coupled regional-to-local modelling system. Atmos. Chem. Phys., 18, 11221–11245.

Hu, K., Davison, T., Rahman, A., & Sivaraman, V. (2014). Air pollution exposure estimation and finding association with human activity using wearable sensor network in proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, ACM, pp. 48–55.

Ibáñez-Forés, V., Bovea, M. D. & Azapagic, A. (2013). Assessing the sustainability of Best Available Techniques (BAT): methodology and application in the ceramic tiles industry. J. Clean. Prod., 51, 162-176.

Janni, K. A., Maier, W. J., Kuehn, T. H. & Ching-Hsu, Y. (2001). Evaluation of biofiltration of air-an innovative air pollution control technology. ASHRAE Trans., 107, pp. 198.

Kampa, M. & Castanas, E. (2008). Human health effects of air pollution. Environ. Pollut., 151(2), 362-367.

Kelly, F. J. (2003). Oxidative stress: its role in air pollution and adverse health effects. Occup. Environ. Med., 60(8), 612-616.

Khazini, L., Dehkharghanian, M. E. & Vaezihir, A. (2022). Dispersion and modeling discussion of aerosol air pollution caused during mining and processing of open-cast mines. Int. J. Environ. Sci. Technol., 19(2), 913-924.

Knap, A. H. & Rusyn, I. (2016). Environmental exposures due to natural disasters. Rev. Environ. Health, 31(1), 89-92

Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M. & Britter, R. (2014). Ultrafine particles in cities. Environ. Int., 66, 1-10.

Künzli, N., Perez, L., von Klot, S., Baldassarre, D., Bauer, M., Basagana, X. & Hoffmann, B. (2011). Investigating air pollution and atherosclerosis in humans: concepts and outlook. Prog. Cardiovasc. Dis., 53(5), 334-343.

Le Quéré, C., Jackson, R.B., Jones, M.W., Smith, A.J., Abernethy, S., Andrew, R.M., De-Gol, A.J., Willis, D.R., Shan, Y., Canadell, J.G. & Friedlingstein, P. (2020). Temporary reduction in daily global CO 2 emissions during the COVID-19 forced confinement. Nat. Clim. Change, 10(7), 647-653.

Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S. J. & White, A. (2016). Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discuss., 189, 85-103.

Lin, B. & Zhu, J. (2018). Changes in urban air quality during urbanization in China. J. Clean. Prod., 188, 312-321.

Lucas, R. M., Norval, M., Neale, R. E., Young, A. R., De Gruijl, F. R., Takizawa, Y. & Van Der Leun, J. C. (2015). The consequences for human health of stratospheric ozone depletion in association with other environmental factors. Photochem. Photobiol. Sci., 14(1), 53–87.

Ma, L., Graham, D.J. & Stettler, M.E. (2021). Air quality impacts of new public transport provision: A causal analysis of the Jubilee Line Extension in London. Atmos. Environ., 245, 118025.

Mahajan, S., Kumar, P., Pinto, J. A., Riccetti, A., Schaaf, K., Camprodon, G. & Forino, G. (2020). A citizen science approach for enhancing public understanding of air pollution. Sustain. Cities Soc., 52, 101800.

Mandal, K., Kumar, A., Tripathi, N., Singh, R. S., Chaulya, S. K., Mishra, P. K. & Bandyopadhyay, L. K. (2012). Characterization of different road dusts in opencast coal mining areas of India. Environ. Monit. Assess., 184(6), 3427-3441.

Manisalidis, I., Stavropoulou, E., Stavropoulos, A. & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: a review. Public Health Front., 8.

Mannucci, P.M. & Franchini, M. (2017). Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health, 14(9), 1048.

McAllister, T. A., Beauchemin, K. A., McGinn, S. M., Hao, X. & Robinson, P. H. (2011). Greenhouse gases in animal agriculture-Finding a balance between food production and emissions. Anim. Feed Sci. Technol., pp. 1-6.

McDonald, F. & Horwell, C. J. (2020). Air Pollution Disasters: Liability Issues in Negligence Associated with the Provision of Personal Protective Interventions (Facemasks). Disaster Med. Public Health Prep., 1–7.

Meetham, A.R., Bottom, D.W. & Cayton, S. (2016). Atmospheric pollution: its history, origins and prevention. 4th Ed. Pergamon Press.

Michulec, M., Wardencki, W., Partyka, M. & Namieśnik J. (2005). Analytical techniques used in monitoring of atmospheric air pollutants. Crit. Rev. Anal. Chem., 35(2), 117–133.

Mosley, S. (2014). Environmental history of air pollution and protection, In: The basic environmental history Environ. Hist. Durh. N. C., 143-169.

Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. J. Sustain. Min., 17(2), 87–96.

Nayak, D., Saetnan, E., Cheng, K., Wang, W., Koslowski, F., Cheng, Y. F. & Smith, P. (2015). Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Agric. Ecosyst. Environ., 209, 108-124.

Nayak, T. & Chowdhury, I. R. (2018). Health damages from air pollution: Evidence from opencast coal mining region of Odisha, India. INSEE Journal, 1(1), 43-65.

Nemery, B., Hoet, P. H. M. & Nemmar, A. (2001). Department of medical history The Meuse Valley fog of 1930: an air pollution disaster. The Lancet, 357, 704–708.

Nigam, V.K. & Shukla, P. (2015). Enzyme based biosensors for detection of environmental pollutants-a review. J. Microbiol. Biotechnol., 25(11), 1773-1781.

Orru, H., Ebi, K. L. & Forsberg, B. (2017). The interplay of climate change and air pollution on health. Curr. Environ. Health Rep., 4(4), 504-513.

Pan, L., Yao, E. & Yang, Y. (2016). Impact analysis of traffic-related air pollution based on real-time traffic and basic meteorological information. J. Environ. Manage., 183, 510-520.

Pandey, B., Agrawal, M. & Singh, S. (2014). Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos. Pollut., Res, 5(1), 79-86.

Perera, F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health, 15(1), 16.

Pluschke, P., & Schleibinger, H. (Eds.). (2018). Indoor air pollution. Springer Berlin Heidelberg. pp. 125-150.

Polivka, B. J. (2018). The Great London Smog of 1952. Am. J. Nurs., 118(4), 57–61.

Rawate, P.D. (1980). Acid Rains: Implications for agriculture. J. Minnesota Academy of Science, pp. 9.

Reuters. [online] Available at: <https://www.reuters.com/> [Accessed 31 Mar 2022].

Rickenbacker, H., Brown, F. & Bilec, M. (2019). Creating environmental consciousness in underserved communities: implementation and outcomes of community-based environmental justice and air pollution research. Sustain. Cities Soc., 47, 101473.

Rojas-Rueda, D., de Nazelle, A., Teixidó, O. & Nieuwenhuijsen, M. J. (2012). Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environ. Int., 49, 100-109.

The Guardian (2022). Russia reasserts right to use nuclear weapons in Ukraine. [online] Available at: <https://www.theguardian.com/world/2022/mar/26/russia-reasserts-right-to-use-nuclear-weapons-in-ukraine-putin> [Accessed 31 Mar 2022].

Salgado A.M., Silva L.M. & Melo A.F. (2011). Biosensor for environmental applications. In: Environmental Biosensors. Ed. Intech Open, 1-12;

Saxena, P. & Naik, V. (2018). Air pollution: sources, impacts and controls. Ed. Cabi, pp. 1-224.

Shammas, N. K., Wang, L. K. & Wang, M. H. S. (2020). Sources, chemistry and control of acid rain in the environment. In: Handbook of Environment and Waste Management: Acid Rain and Greenhouse Gas Pollution Control, 1-26.

Sapkota, A., Symons, J. M., Kleissl, J., Wang, L., Parlange, M. B., Ondov, J., … Buckley, T. J. (2005). Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore City. Environ. Sci. Technol., 39(1), 24–32.

Sher, F., Kawai, A., Güleç, F. & Sadiq, H. (2019). Sustainable energy saving alternatives in small buildings. Sustain. Energy Technol. Assess., 32, 92-99.

Shi, T., Liu, Y., Zhang, L., Hao, L. & Gao, Z. (2014). Burning in agricultural landscapes: an emerging natural and human issue in China. Landsc. Ecol., 29(10), 1785-1798.

Silva, L. T. & Mendes, J. F. (2012). City Noise-Air: An environmental quality index for cities. Sustain. Cities Soc., 4, 1-11.

Singh, R., Sram, R. J., Binkova, B., Kalina, I., Popov, T. A., Georgieva, T. & Farmer, P. B. (2007). The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. MUTAT RES-FUND MOL M, 620(1-2), 83-92.

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. & Preuss, P.W. (2013). The changing paradigm of air pollution monitoring. Environ. Sci. Technol., 47(20), 11369-11377.

Sofia, D., Gioiella, F., Lotrecchiano, N. & Giuliano, A. (2020). Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res., 27(16), 19226-19235.

Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., Berntsen, T. K. & Zhu, T. (2015). Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chem. Phys., 15(18), 10529-10566.

Sun, C., Zhang, W., Fang, X., Gao, X. & Xu, M. (2019). Urban public transport and air quality: Empirical study of China cities. Energy Policy, 135, 110998.

Sun, L., Wong, K. C., Wei, P., Ye, S., Huang, H., Yang, F. & Ning, Z. (2016). Development and application of a next generation air sensor network for the Hong Kong marathon 2015 air quality monitoring. Sensors, 16(2), 211.

Tan, X., Han, L., Zhang, X., Zhou, W., Li, W. & Qian, Y. (2021). A review of current air quality indexes and improvements under the multi-contaminant air pollution exposure. J. Environ. Manage., 279, 111681.

Tiwary, A., Williams, I. & Colls, J. (2018) Air pollution: Measurement, modelling and mitigation, 4th Edition, CRC Press, 7-9.

Tong, Z., Chen, Y., Malkawi, A., Liu, Z. & Freeman, R. B. (2016). Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Appl. Energy, 179, 660-668.

Tsai, W.T. (2018). An overview of health hazards of volatile organic compounds regulated as indoor air pollutants. Rev. Environ. Health, 0(0)

Tubiello, F. N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N. & Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett., 8(1), 015009.

Vahidi, A. & Sciarretta, A. (2018). Energy saving potentials of connected and automated vehicles. Transp. Res. Part C Emerg. Technol., 95, 822-843.

Vizcaíno, M.A.C., González-Comadran, M. & Jacquemin, B. (2016). Outdoor air pollution and human infertility: a systematic review. Fertil. Steril., 106(4), 897-904.

Wargent, J. J. & Jordan, B. R. (2013). From ozone depletion to agriculture: Understanding the role of UV radiation in sustainable crop production. New Phytol., 197(4), 1058–1076.

West, J. J., Cohen, A., Dentener, F., Brunekreef, B., Zhu, T., Armstrong, B., ... & Wiedinmyer, C. (2016). What we breathe impacts our health: improving understanding of the link between air pollution and health. J. Am. Chem. Soc., 4895-4904.

Wollenberg, E., Richards, M., Smith, P., Havlík, P., Obersteiner, M., Tubiello, F. N. & Campbell, B. M., (2016). Reducing emissions from agriculture to meet the 2 C target. Glob. Change Biol. Bioenergy, 22(12), 3859-3864.

Xalxo, R. & Sahu, K. (2017). Acid rain-induced oxidative stress regulated metabolic interventions and their amelioration mechanisms in plants. Biologia (Poland), 72(12), 1387–1393.

Xia, T., Nitschke, M., Zhang, Y., Shah, P., Crabb, S. & Hansen, A. (2015). Traffic-related air pollution and health co-benefits of alternative transport in Adelaide, South Australia. Environ. Int., 74, 281-290.

Zhang, S., Ren, H., Zhou, W., Yu, Y. & Chen, C. (2018). Assessing air pollution abatement co-benefits of energy efficiency improvement in cement industry: A city level analysis. J. Clean. Prod., 185, 761-771.

Published

2022-06-30

Issue

Section

Review