Revealing the CRISPR array in bacteria living in our organism

Authors

  • Matei-Ștefan DOBRESCU Department of Molecular Biology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania. *Corresponding author: matei.dobrescu@stud.ubbcluj.ro https://orcid.org/0000-0003-0122-4332
  • Dumitrana IORDACHE Department of Molecular Biology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania; Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University Cluj-Napoca, Romania; Doctoral School of Integrative Biology, Babeș-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0002-9811-270X
  • Anca BUTIUC-KEUL Department of Molecular Biology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania; Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University Cluj-Napoca, Romania. https://orcid.org/0000-0002-6523-6845

DOI:

https://doi.org/10.24193/subbbiol.2022.1.07

Keywords:

CRISPR array; clinical isolates; pathogens; bacteria.

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats) is an immune system used by bacteria to defend themselves from different types of pathogens. It was discovered that this immune system can modify itself in specific regions called spacers due to previous interaction with foreign genetic material from phages and plasmids. Through our research, we have identified in different bacterial isolates CRISPR arrays belonging to the subtypes I-E (present in 42 samples) and I-F (present in 9 samples). The number of spacers in CRISPR arrays was also estimated based on the array length as a possible connection with the systems activity. Our results yielded arrays as small as 200 bp and as large as 1400 bp.

Dobrescu et al (PDF)

Article history: Received: 31 March 2022; Revised: 27 April 2022; Accepted: 9 June 2022; Available online: 30 June 2022.

References

Barrangou, R. (2015). Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol. 16, 247, doi:10.1186/s13059-015-0816-9.

Brouns S. J. J, Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J. H., Snijders A. P. L., Dickman M. J., Makarova K. S., Koonin E. V., van der Oost J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science, 321(15891): 960-964.

Cady, K.C.; Bondy-Denomy, J.; Heussler, G.E.; Davidson, A.R.; Oʼtoole G.A. (2012). The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages. J. Bacteriol. 194, 5728–5738, doi:10.1128/jb.01184-12.

Carte J., Christopher R. T., Smith J. T., Olson S., Barrangou R., Moineau S., Glover C.V.C. III, Graveley B. R., Terns R. M., Terns, M. P. (2014). The three major types of CRISPR‐ Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Molecular Microbiology. 93(1): 98-112.

Crăciunaş C, Butiuc-Keul A, Flonta M, Brad A, Sigarteu M (2010) Application of molecular techniques to the study of Pseudomonas aeruginosa clinical isolate in Cluj-Napoca, Romania. Ann Univ Oradea Biology 243-247.

Devashish R., Lina A., Archana R., Magnus L. (2015). The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie. 117: 119-128.

Farkas, A.; Tarco, E.; Butiuc-Keul, A. (2019). Antibiotic resistance profiling of pathogenic Enterobacteriaceae from Cluj-Napoca, Romania. Germs. 9, 17–27, doi:10.18683/germs.2019.1153.

Fritz H. K., Kurt A. B., Johannes E., Rolf M. Z. (2005) Medical Microbiology. ch. 4, Thieme, pp. 278, 279.

Garneau, J.E.; Dupuis, M.-È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 468, 67–71, doi:10.1038/nature09523.

Gesner, E.M.; Schellenberg, M.J.; Garside, E.L.; George, M.M.; Macmillan, A.M. (2015) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat. Struct. Mol. Biol. 18, 688–692, doi:10.1038/nsmb.2042.

Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A, Eng ET, Raczkowski AM, Fox T, Earl LA, Patel DJ, Subramaniam S. (2017). Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell. 171:414–426.

Haft D. H., Selengut J., Mongodin E. F., Nelson K.E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Computational Biology, 1(6).

Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R. (2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. Feb;190(4):1401-12. doi: 10.1128/JB.01415-07.

Jansen R., Embden J. D., Gaastra W., Schouls L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology. 43(6): 1565-1575.

Kiro, R.; Goren, M.G.; Yosef, I.; Qimron, U. (2013). CRISPR adaptation in Escherichia coli subtype I-E system. Biochem. Soc. Trans. 41, 1412–1415, doi:10.1042/bst20130109.

Kunin, V.; Sorek, R.; Hugenholtz, P. (2007). Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61–7, doi:10.1186/gb-2007-8-4-r61.

Makarova, K.S.; Aravind, L.; Wolf, Y.I.; Koonin, E.V. (2011) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct. 6, 1–27, doi:10.1186/1745-6150-6-38.

Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.M.; Wolf, Y.I.; Yakunin, A.F.; et al. (2011). Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Genet. 9, 467–477, doi:10.1038/nrmicro2577.

Medina-Aparicio, L.; Dávila, S.; E Rebollar-Flores, J.; Calva, E.; Hernández-Lucas, I. (2018). The CRISPR-Cas system in Enterobacteriaceae. Pathog. Dis. 76, doi:10.1093/femspd/fty002.

Mlaga, K.D.;Garcia, V.; Colson, P.; Ruimy, R.; Rolain, J.-M.; Diene, S.M. (2021) Extensive Comparativ Genomic Analysis of Enterococcus faecalis and Enterococcus faecium Reveals a Direct Association between the Absence of CRISPR–Cas Systems, the Presence of Anti-Endonuclease (ardA) and the Acquisition of Vancomycin Resistance in E. faecium. Microorganisms. 9, 1118. https://doi.org/10.3390/microorganisms.

Mojica F. J. M., Díez-Villaseñor C., García-Martínez J., Almendros C. (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 155(3): 773-740.

Nam K. H., Haitjema C., Liu X., Ding F., Wang H., DeLisa M. P., Ke A. (2014). Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System. Structure. 20(9): 1574-1584.

Palmer K. L., Gilmore M. S. (2010) Multidrug-resistant enterococci lack CRISPR-cas. mBio. vol. 1(4).

Semenova, E.; Jore, M.M.; Datsenko, K.A.; Semenova, A.; Westra, E.R.; Wanner, B.; Van Der Oost, J.; Brouns, S.J.J.; Severinov, K. (2011) Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. 108, 10098–10103, doi:10.1073/pnas.1104144108.

Sinkunas T., Gasiunas G., Fremaux C., Barrangou R., Horvath P., Siksnys V., (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO Journal. 30(7): 1335-13342.

Wheatley, R.M., MacLean, R.C. (2021). CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 15, 1420–1433. https://doi.org/10.1038/s41396-020-00860-3.

Xue C, Sashital DG. (2019). Mechanisms of Type I-E and I-F CRISPR-Cas Systems in Enterobacteriaceae. EcoSal Plus. 8(2):10.1128/ecosalplus.ESP-0008-2018. doi:10.1128/ecosalplus.ESP-0008-2018.

Yosef I., Goren M. G., Qimron U. (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Research. 40(12): 5569-5576.

Published

2022-06-30

Issue

Section

Research article