Cuticle structure of Carpathian endemic species: Trachelipus trilobatus (Crustacea, Isopoda, Oniscidea) described with the scanning electron microscope

Authors

  • Diana CUPȘA University of Oradea, Faculty of Informatics and Sciences, Department of Biology, Oradea, Romania.
  • Traian-Octavian COSTEA University of Oradea, Nanoscience Research Platform – SMARTMAT, Oradea, Romania. https://orcid.org/0000-0002-3206-2340
  • Alfred-Ștefan CICORT-LUCACIU University of Oradea, Faculty of Informatics and Sciences, Department of Biology, Oradea, Romania. https://orcid.org/0000-0003-1276-7463
  • Severus-Daniel COVACIU-MARCOV University of Oradea, Faculty of Informatics and Sciences, Department of Biology, Oradea, Romania. https://orcid.org/0000-0003-3321-477X
  • Sára FERENȚI University of Oradea, Nanoscience Research Platform – SMARTMAT, Oradea, Romania. *Corresponding author: ferenti.sara@gmail.com

DOI:

https://doi.org/10.24193/subbbiol.2022.1.03

Keywords:

SEM, cuticle surface, endemic species, ecology, sensory structures.

Abstract

The cuticle is the interface between an animal and its environment; thus, it has a special importance. In Arthropods, the cuticle is not uniform, having numerous formations, which is also the case of epigeic terrestrial isopods. Our study presents data on cuticle surface morphology, obtained with a scanning electron microscope, of an endemic terrestrial isopod species, Trachelipus trilobatus. Here we present SEM images of some external morphological features of this species, which were previously described only at the light microscope. Although T. trilobatus was frequently encountered in caves, the aspect of its cuticle is characteristic for an epigeic isopod, presenting numerous micro-scales, spines, and tricorn sensilla, which are considered hygroreceptors. This fact proves that originally T. trilobatus is an epigeic species, which secondarily adapted to karst areas with caves. Nevertheless, it regularly leaves the caves and the limestone cracks and emerges on the soil surface. Therefore, T. trilobatus is able to receive information about environmental humidity, especially on the soil surface, which, when unfavorable, causes the species retreat into caves or cracks. Climatic fluctuations from the glacial periods could direct T. trilobatus to this environment and way of life, modifying its morphology, but not its cuticle.

Cupsa et al (PDF)

Article history: Received: 15 February 2022; Revised: 24 April 2022; Accepted: 23 May 2022; Available online: 30 June 2022.

References

Boitan, V., & Negrea, Ș. (2001). Contribution to the knowledge of the terrestrial cavernicolous fauna from the middle Cerna valley (Banat, Romania). Trav. Mus. Natl. Hist. Nat. Grigore Antipa, 43, 11-22.

Csonka, D., Halasy, K., Buczkó, K., & Hornung, E. (2018). Morphological traits - desiccation resistance - habitat characteristics: a possible key for distribution in woodlice (Isopoda, Oniscidea). ZooKeys, 801, 481-499.

Dias, A.T.C., Krab, E.J., Mariën, J., Zimmer, M., Cornelissen, J.H.C., Ellers, J., Wardle, D.A., & Berg, M.P. (2012). Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. Oecologia, 172, 3, 667-677.

Ferenți, S., & Covaciu-Marcov, S.-D. (2018). Beyond the rule: a mountainous cave species, Mesoniscus graniger (Isopoda, Oniscidea) on a plain of south-western Romania. Oltenia. Studii și Comunicări. Științele Naturii, 34, 1, 89-92.

Ferenți, S., Cupșa, D., Cicort-Lucaciu, A.-Ș., & Covaciu-Marcov, S.-D. (2013). Winter activity of terrestrial isopods from thermal habitats in western Romania. Arch. Biol. Sci., 65, 2, 795-800.

Ferenți, S., Cadar, A.-M., & Maier, A.-R.-M. (2020). New distribution records of an endemic terrestrial isopod species (Trachelipus trilobatus) in the Romanian Southern Carpathians. Ecologia Balkanica, 12, 2, 207-211.

Giurginca, A. (2000-2001). The spreading of the genus Mesoniscus in the Romanian Carpathians. Trav. Inst. Speol. Émile Racovitza, 39-40, 11-22.

Giurginca, A. (2009). Aspects concerning the genus Mesoniscus: morphology, spreading, historical biogeography. Ed. Politehnica Press Bucharest, pp. 128.

Giurginca, A. (2022). Oniscidea of Romania. Ed. Transversal Press Târgoviște, pp. 240.

Giurginca, A., Šustr, V., & Tajovský, K. (2016). Morphological structures on the integument of Mesoniscus graniger. Trav. Inst. Speol. Émile Racovitza, 55, 129-133.

Giurginca, A., Baba, Ș.-C., & Munteanu, C.-M. (2017). New data on the Oniscidea, Diplopoda and Chilopoda from urban parks of Bucharest. North-West. J. Zool., 13, 2, 234-243.

Hatanaka, T. (1989). Response of dorsal tricorn-type sensilla on Ligia exotica. Comp. Biochem. Physiol., 92A, 4, 513-319.

Holdich, D.M., & Lincoln, R.G. (1974). An investigation of the surface of the cuticle and associated sensory structures of the terrestrial isopod, Porcellio scaber. J. Zool., 172, 469-482.

Hornung, E. (2011). Evolutionary adaptation of oniscidean isopods to terrestrial life: Structure, physiology and behavior. Terr. Arthropod Rev., 4, 95-130.

Jans, D.E., & Ross, K.F.A. (1963). A histological study of the peripheral receptors in the thorax of land isopods, with special reference to the location of possible hygroreceptors. Q. J. Microsc., 104, 3, 337-350.

Khisametdinova, D., & Schmalfuss, H. (2012). Three new species of Porcellium (Isopoda, Oniscidea) from the Caucasus region. Stuttg. Beitr. Naturkd. A., 5, 103-113.

Khisametdinova, D., Nefediev, P.S., & Tuf, I.H. (2016). New records of woodlice in the south of western Siberia, Russia (Isopoda: Oniscidea). Zool. Bespozvon., 13, 1, 51-55.

Meyer-Rochow, V.B. (1980). Cuticular surface structures in Glyptonotus antarcticus - a marine isopod from the Ross Sea (Antarctica). Zoomorphologie, 94, 209-216.

Ponta, G., Povară, I., Isverceanu, E.G., Onac, B.P., Marin, C., & Tudorache, A. (2013). Geology and dynamics of underground waters in Cerna Valley/Băile Herculane (Romania). Carbonates Evaporites, 28, 31-39.

Pop, D.-R., Dordea, D.-N., Cicort-Lucaciu, A.-Ș., Covaciu-Marcov, S.-D., & Ferenți, S. (2019). A hot-spot of native terrestrial isopods in an urban area in the Carpathians, Herculane Spa: an emerging of the past into the present. Spixiana, 42, 2, 219-228.

Pop, D.-R., Ferenți, S., Maier, A.-R.-M., Cadar, A.-M., Covaciu-Marcov, S.-D., & Cupșa, D. (2021). A journey on the railway to nowhere: terrestrial isopod assemblages on an abandoned railway in western Romania (Crustacea, Isopoda). Spixiana, 44, 2, 135-143.

Povară, I., & Conovici, M. (2013). Tectono-karst depressions in the central-western area of the Mehedinți Mountains (SW Romania). Trav. Inst. Speol. Émile Racovitza, 52, 37-49.

Povară, I., Conovici, M., Munteanu, C.-M., Marin, C., & Ioniță, E.D. (2015). Karst system within the Southern Carpathians structure (Romania). Carpathian J. Earth Environ. Sci., 10, 2, 5-17.

Powell, C.V.L., & Halcrow, K. (1982). The surface microstructure of marine and terrestrial isopoda (Crustacea, Peracarida). Zoomorphology, 101, 151-164.

Price, J.B., & Holdich, D.M. (1980). The formation of the epicuticle and associated structures in Oniscus asellus (Crustacea, Isopoda). Zoomorphologie, 94, 321-332.

Radu, V.G. (1958). Genul Tracheoniscus în Fauna R.P.R. Comunicările Academiei Republicii Populare Române, 8, 1, 53-59. [in Romanian].

Radu, V.G. (1985). Fauna R. S. R. Crustacea. vol. IV, Fascicola 14 Ordinul Isopoda, Subordinul Oniscoidea, Crinochaeta. Editura Academiei R. S. R. Bucharest, pp. 158. [in Romanian].

Radu, V.G., & Tomescu, N. (1970). Analiza comparativă a dispoziției nodulilor laterali și a câmpurilor glandulare epimerale la speciile genului Tracheoniscus din România. Studia Univ. Babeș-Bolyai, Biologia, 1, 83-91. [in Romanian].

Schmalfuss, H. (1977). Morphologie und funktion der targalen längsrippen bei landisopoden (Oniscoidea, Isopoda, Crustacea). Zoomorphologie, 86, 155-167.

Schmalfuss, H. (1978). Morphology and function of cuticular micro-scales and corresponding structures in terrestrial isopods (Crust., Isop., Oniscoidea). Zoomorphologie, 91, 263-274.

Schmalfuss, H. (1998). Evolutionary strategies of the antennae in terrestrial isopods. J. Crustac. Biol., 18, 1, 10-24.

Schmalfuss, H. (2011). The terrestrial isopods (Isopoda: Oniscidea) of Greece, 27ͭ ͪ contribution. The genus Armadillidium (Armadillidiidae) on the Ionian Islands. Stuttg. Beitr. Naturkd. A., 4, 1-42.

Schmalfuss, H., & Khisametdinova, D. (2015). Trachelipus species (Isopoda: Oniscidea) of the eastern Black Sea coast. Stuttg. Beitr. Naturkd. A., 8, 9-20.

Schmidt, C. (2002). Contribution to the phylogenetic system of the Crinocheta (Crustacea, Isopoda). Part 1. (Olibrinidae to Scyphacidae s. str.). Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologische Reihe, 78, 2, 275-352.

Schmidt, C. (2008). Phylogeny of the terrestrial isopods (Oniscidea): a review. Arthropod Syst. Phylogeny, 66, 2, 191-226.

Seidl, B., Reisecker, C., Neues, F., Campanaro, A., Epple, M., Hild, S., & Ziegler, A. (2021). The dorsal tergite cuticle of Helleria brevicornis: ultrastructure, mineral distribution, calcite microstructure and texture. J. Struct. Biol. X, 5: 100051. https://doi.org/10.1016/j.yjsbx.2021.100051.

Sfenthourakis, S., & Hornung, E. (2018). Isopod distribution and climate change. ZooKeys, 801, 25-61.

Štrus, J., Tušek-Žnidarič, M., Repnik, U., Blejec, A., & Summers, A. (2019). Microscopy of crustacean cuticle: formation of a flexible extracellular matrix in moulting sea slaters Ligia pallasii. J. Mar. Biolog. Assoc., 99, 857-865.

Tabacaru, I., & Giurginca, A. (2013). Cavernicolous Oniscidea of Romania. Trav. Inst. Speol. Émile Racovitza, 52, 3-26.

Tomescu, N., Teodor, L.A., Ferenți, S., & Covaciu-Marcov, S.-D. (2015). Trachelipus species (Crustacea, Isopoda, Oniscidea) in Romanian fauna: morphology, ecology, and geographic distribution. North-West. J. Zool., 11, Supplement 1, S1-S106.

Vilisics, F., & Hornung, E. (2009). Urban areas as hot-spots for introduced and shelters for native isopod species. Urban Ecosyst., 12, 333-345.

Vilisics, F., & Terhivuo, J. (2009). Inspection on materials contributing to the knowledge of terrestrial isopoda (Crustacea, Oniscidea) in Finland. Memo. Soc. Fauna Flora Fenn., 85, 9-15.

Vittori, M. (2021). Structure of a hinge joint with textured sliding surfaces in terrestrial isopods (Crustacea: Isopoda: Oniscidea). Zoological Lett., 7, 7. https://doi.org/10.1186/s40851-021-00177-9.

Vittori, M., & Gantar, I. (2020). The origin of microscopic spheres on the exoskeleton of the woodlouse Porcellionides pruinosus (Crustacea: Isopoda) and their effect on its hydrophobicity. Arthropod Struct. Dev., 58, 100968. https://doi.org/10.1016/j.asd.2020.100968.

Warburg, M.R., Lisenmair, K.E., & Bercovitz, K. (1984). The effect of climate in the distribution and abundance of isopods. Symposia of the Zoological Society of London, 53, 339-367.

Wood, C.T., Kostanjšek, R., Araujo, P.B., & Štrus, J. (2017). Morphology, microhabitat selection and life history traits of two sympatric woodlice (Crustacea: Isopoda: Oniscidea): a comparatice analysis. Zool. Anz., 268, 1-10.

Ziegler, A., & Altner, H. (1995). Are the most numerous sensilla of terrestrial isopods hydroreceptors? Ultrastructure of the dorsal tricorn sensilla of Porcellio scaber? Cell Tissue Res., 282, 135-145.

Published

2022-06-30

Issue

Section

Research article