The influence of osmo-priming on germination parameters of Telfairia occidentalis Hook f. (fluted pumpkin)

Authors

  • Beckley IKHAJIAGBE Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria. https://orcid.org/0000-0003-2834-7447
  • Francis A. IGIEBOR Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria; Department of Biological Sciences, College of Natural and Applied Sciences, Wellspring University, Benin City, Nigeria; *Corresponding author: francis.igiebor@lifesci.uniben.edu https://orcid.org/0000-0003-4305-6592
  • Solomon O. OSADEBANMWEN Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria.
  • Kosisochukwu L. ASIELUE Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria.
  • Geoffrey O. ANOLIEFO Environmental Biotechnology and Sustainability Research Group, Department of Plant Biology and Biotechnology, University of Benin, Nigeria.

DOI:

https://doi.org/10.24193/subbbiol.2022.1.01

Keywords:

Fluted pumpkin, seed priming, germination, seedling, vegetable.

Abstract

Fluted pumpkin (Telfairia occidentalis Hook F.) seed germination proceeds once adequate temperature and moisture content have been reached and dormancy is broken. Seed priming is a technique in which seeds are hydrated (control hydration) and dried to their original moisture content while preventing radicle emergence. The study aims to investigate the consequence of osmo-priming on the germination parameters of fluted pumpkin (Telfairia occidentalis). Laboratory studies were carried out using 36 seeds of fluted pumpkin which was osmoprimed with NaCl (0.05, 0.1 and 1 millimolar), MgCl2 (0.05, 0.1 and 1 millimolar) and KCl (0.05, 0.1 and 1 millimolar). Data on germination percentage, growth parameters, and chlorophyll content showed a significant difference in germination percentages between osmoprimed seeds and control seeds. The time of germination in osmoprimed seeds was significantly reduced when compared with control. The germination rate index (64%) was different between controls and osmoprimed seeds with 0.05 millimolar KCl and 0.10 millimolar MgCl2 (). The growth parameters of seedlings 15 days after sowing showed significant increase in the number of leaves, number of root branches and chlorophyll content. Seed osmopriming may be a sustainable method to increase crop production in T.ccidentalis.

Ikhajiagbe et al (PDF)

Article history: Received: 19 November 2021; Revised: 19 April 2022; Accepted: 3 June 2022; Available online: 30 June 2022.

References

Abdul-Baki, A., & Anderson, J.D. (1973). Vigor determination in Soybean seed by multiple criteria. Crop Sci. 13: 630-633.

Ajouri, A., Haben, A., & Becker, M. (2004). Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167: 630 – 636.

Al-Mudaris, M.A. (1998). Notes on various parameters recording the speed of seed germination. Der Tropenlandwlrt, Beltrage zur tropischen Landwirischaft und Veterinarmedizin, 99. Jahrgang, Oktober 98, S. 141 - 154.

Arif, M. (2005). Seed priming improves emergence, yield and storability of soybean. PhD thesis in Agronomy. NWFP Agricultural University Peshawar, Pakistan.

Asgedom, H., & Becker, M. (2001). Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proceedings of. Deutscher Tropentag, University of Bonn and ATSAF, Magrraf Publishers Press, Weickersheim. 282p.

Association of Official Seed Analysis (AOSA). (1983). Seed Vigor Testing Handbook. Contibution No. 32 to the handbook on Seed Testing.

Basra, S.M.A., Ullah, E., Warriach, E.A., Cheema, M.A., & Afzal, I. (2003). Effect of storage on growth and yield of primed canola seeds (Brassican apus). Int J Agric Biol 5: 117 – 120.

Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H. (2013) Seeds: Physiology

of Development, Germination and Dormancy. Springer Publisher, New York, USA. 399p.

Brocklehurst, P.A., & Dearman, J. (1983). Interactions between seed priming treatments and nine seed lots of carrot, celery and onion. Ann Appl Biol 102: 577 – 584.

Dell’Aquila, A., Pignone, D., & Carella, G. (1984). Polyethylene glycol 6000 priming effects on germination of aged wheat seed lots. Biol Plant 26: 166 – 173.

Dell’Aquila, A., & Tritto, V. (1990). Ageing and osmotic priming in wheat seeds: effects upon certain components of seed quality. Ann Bot 65: 21 – 26.

Demir Kaya, M., Okçu, G., Atak, M., Çikili, Y., & Kolsarici, Ö. (2006). Seed treatment to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Euro J Agro 24: 291 – 295.

Di Girolamo, G., & Barbanti, L. (2012). Treatment conditions and biochemical processes influencing seed priming effectiveness. Italy J Agro 7(25): 178 – 188.

Fincher, G.B. (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. An Rev Plant Phy & Mol Bio 40: 305 – 346.

Flors, V., Paradís, M., García-Andrade, J., Cerezo, M., Bosch, G.C., & Pilar, G.A.P. (2007). A tolerant behavior in salt-sensitive tomato plants can be mimicked by chemical stimuli. Plant Signaling Behav 2: 50 – 57.

Foti, S., Cosentino, S.L., Patane, C., & D’Agosta, G.M. (2002). Effect of osmoconditioning upon seed germination of Sorghom (Sorghom Bicolor (L). Moench) under low temperatures. Seed Sci Tech 30: 521 – 533.

Ghiyasi, M., Siyahjani, A. A., Tajbakhsh, M., Amirnia, R., & Salehzadeh, H. (2008). Effect of osmopriming with polyethylene glycol (8000) on germination and seedling growth of wheat (Triticum aestivum L.) seeds under salt stress. Res J Biol Sci 3: 1249 – 1251.

Gurusinghe, S.H., Cheng, Z., & Bradford, K.J. (1999). Cell cycle activity during seed priming is not essential for germination advancement in tomato. J Exp Bot 50(330): 101 – 106.

Hameed, A., Sheikh, M.A., Farooq, T., Basra, S.M.A., & Jamil, A. (2014). Chitosan seed priming improves seed germination and seedling growth in wheat (Triticum aestivum L.) under osmotic stress induced by polyethylene glycol. Philippian Agr Sci 97: 294 – 299.

Hardegree, S.P. (1994). Drying and storage effects on germination of primed grass seeds. J Range Manage 47: 196 – 199.

ISTA (1993). Handbook for seedling evaluation. International Seed Testing Association, Zurich, Switzerland.

Josep, A.R., & Maria, M. (2002). Seed germination and reproductive features of Lysimachia minoricensis (Primulaceae), a wild extinct plant. Ann Bot 89: 559–562.

Khan, M.B., Gurchani, M.A., Freed, S., Jabran, K., & Hussain, M. (2014). Osmopriming improves the emergence, growth, nutrient uptake and soluble sugar contents of wheat seedlings. Soil Environ 33: 142 – 148.

Lemmens, E., Moroni, A.V., Pagand, J., Heirbaut, P., Ritala, A., Karlen, Y., Lȇ, K., Van den Broeck, H.C., Brouns, F.J.P.H., De Brier, N., & Delcour, J.A. (2019). Impact of cereal seed sprouting on its nutritional and technological properties: a critical review. Comprehensive Rev Food Sci Food Safety 18: 305 – 328.

Lemrasky, M.G., & Hosseini, S.Z. (2012). Effect of seed priming on the germination behavior of wheat. Int J Agr Crop Sci 4: 564 – 567.

Ma, Z., Bykova, N.V., & Igamberdiev, A.U. (2017). Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. Crop J 5: 459 – 477.

Miransari, M., & Smith, D.L. (2014). Plant hormones and seed germination. Environ Exp Bot 99: 110 – 121.

Mirmazloum, I., Kiss, A., Erdélyi, É., Ladányi, M., Németh, É. Z., & Radácsi, P. (2020). The Effect of Osmopriming on Seed Germination and Early Seedling Characteristics of Carum carvi L. Agriculture. 10(4):94.

Mirza, S.R., Ilyas, N., & Batool, N. (2015). Seed priming enhanced seed germination traits of wheat under water, salt and heat stress. Pure Appl Bio 4: 650 – 658.

Nascimento, W.M., & West, S.H. (1998). Priming and Seed Orientation affect emergence and seed coat adherence and seedling development of muskmelon transplants. Horti Sci 33: 847 – 848.

Nonogaki, H., Bassel, G.W., & Bewley, J.D. (2010). Germination - still a mystery. Plant Sci 179: 574 – 581.

Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Report 34: 1281 – 1293.

Rehman, S.U., Khalil, S.K., Khan, A.Z., Subhan, F., Younis, M., Muhammad, Y., & Jan, N. (2010). Poly ethylene glycol (PEG) osmopriming affects phenology, plant height and biomass yield of rainfed wheat. Saudi J Anaesth 26: 337 – 348.

Rowse, H.R. (1995). Drum Priming- A non-osmotic method of priming seeds. Seed Sci Tech 24: 281 – 294.

Ruan, S., Xue, Q., & Tylkowska, K. (2002). The influence of priming on germination of rice Oryza sativa L. seeds and seedling emergence and performance in flooded soil. Seed Sci Tech 30: 61 – 67.

Sadeghi, H., Fardin, K., liela, Y., & Saman, S. (2011). Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.). ARPN J Agric Bio Sci, 6(1): 39-43.

Salehzadeh, H., Shishvan, M.I., Ghiyasi, M., Forouzin, F., & Siyahjani, A.A. (2009). Effect of seed priming on germination and seedling growth of wheat (Triticum aestivum L.). Research J Biol Sci 4: 629 – 631.

Scott, S.J., Jones, R.A., & Williams, W.A. (1984). Review ofdataanalysismethodsforseed germination. Crop Science, 24:1192-1199.

Sivritepe, N., Sivritepe, H.O., & Eris, A. (2003). The effects of NaCl priming on salt tolerance in melon seedling grown under saline conditions. Scientia Holti 97: 229 – 237.

Soeda, Y., Konings, M.C.J.M., Vorst, O., van Houwelingen, A.M.M.L., Stoopen, G.M., & Maliepaard, C.A. (2005). Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Phys 137: 354 – 368.

Sung, J. M., & Chang, Y. H. (1993). Biochemical activities associated with priming of sweet corn seeds to improve vigor. Seed Sci Tech 21: 97 – 105.

Toklu, F., Baloch, F.S., Karaköy, T., & Özkan, H. (2015). Effects of different priming applications on seed germination and some agromorphological characteristics of bread wheat (Triticum aestivum L.). Turkey J Agri Forest 39: 1005 – 1013.

Varier, A., Vari, A.K., & Dadlani, M. (2010). The subcellular basis of seed priming. Curr Sci 99: 450 – 456.

Ventura, L., Donà, M., Macovei, A., Carbonera, D., Buttafava, A., Mondoni, A., Rossi, G., & Balestrazzi, A. (2012). Understanding the molecular pathways associated with seed vigor. Plant Phy Biochem 60: 196 – 206.

Xiang, X., Fu, J.R., Xiang, X., & Fu, J.R. (1995). The ways to increase vigor of wampee (Clausena lansium) seeds. J Trop Subtrop Bot 5: 39 – 44.

Yari, L., Aghaalikani, M., & Khazaei, F. (2010). Effect of seed priming duration and temperature on seed germination behavior of bread wheat (Triticum aestivum L.). ARPN J Agric Bio Sci 5: 1 – 6.

Zhang, F., Yu, J., Johnston, C.R., Wang, Y., Zhu, K., Lu, F., Zhang, Z., & Zou, J. (2015). Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS 10: 1 – 15.

Published

2022-06-30

Issue

Section

Research article