Effect of Fluocinolone-N treatment on fetal liver development in White Wistar Rats

Authors

DOI:

https://doi.org/10.24193/subbbiol.2019.2.07

Keywords:

glucocorticoid excess, fetal development, liver.

Abstract

Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing liver. The main objective of this study is to analyze the side effects of glucocorticoid excess when treatment is done with Fluocinolone-N ointment, to see if it has any effect on rat newborns liver which have an important role in development of fetuses. Our results demonstrate that Fluocinolone-N treatment has negative impact upon the embryologic development of liver.

Kis 2019 (PDF)

References

Agnew, E.J., Ivy, J.R., Stock, S.J., & Chapman, K.E. (2018). Glucocorticoids, antenatal corticosteroid therapy and fetal heart maturation. Journal of molecular endocrinology, 61(1), R61-R73.

Amatruda, J.M., Danahy, S.A., & Chang, C.L. (1983). The effects of glucocorticoids on insulin-stimulated lipogenesis in primary cultures of rat hepatocytes. Journal of biochemistry, 212(1), 135–41.

Beaudry J.L., Anna M.D., Teich T., Tsushima, R., & Riddell, M.C. (2013). Exogenous glucocorticoids and a high-fat diet cause severe hyperglycemia and hyperinsulinemia and limit islet glucose responsiveness in young male Sprague-Dawley rats. Endocrinology, 154(9), 3197-208.

Bloom, S. L., Sheffield, J. S., Mcintire, D., & Leveno, K. (2001). Antenatal dexamethasone and decreased birth weight. Obstetric and gynecology, 97, 485–490.

Cosío, B.G., Torrego, V., & Adcock, I.M. (2005). Molecular mechanisms of glucocorticoids. Archivos de bronconeumologia, 41(1), 34-41.

Coutinho, A.E., & Chapman, K.E., (2011). The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Molecular and cellular endocrinology, 335, 2–13.

Crăciun, C., Ardelean, A., Madar, J., Tarba, C. Şildan, N., Crăciun, V., & Farcaş, T., (1997a). Ultrastructural studies of the secondary effects induced at the level of thymus by topic application of Fluocinolone-acetonid N in prepuberal rats, In: Current Problems and Technique in Cellular and Molecular Biology, (eds) Ardelean, A., Crăciun, C., 176-186, Mirton, Timişoara.

Crăciun, C., Frăţilă, S., Ardelean, A., Madar, J., & Crăciun, V. (1999a). Ultrastructural and biochemical studies concerning the action of some topical dermocorticosteroids on prepubertal rat thymuses, before and simultaneously with the adrenoreceptors blocking, In: Current Problems in Cellular and Molecular Biology (eds) Ardelean, A., Crăciun, C., 209-248, Risoprint, Cluj-Napoca.

Crăciun, C., Frăţilă, S., Madar, J., Ardelean, A., Crăciun, V., & Ilie, A. (1999b). Effects of some topical dermocorticoids on pubertal rat thymuses after beta-adrenoreceptros blocking, In: Current Problems in Cellular and Molecular Biology, (eds) Ardelean, A., Crăciun, C., 249-283, Risoprint, Cluj-Napoca.

Crăciun, C., Kis, E., Sandu, V.D., Paşca, Crăciun, V., & Madar, J. (2001). Comparative studies of the adrenal cortex structure and ultrastructure in mature rats treated with topical dermocorticosteroids, Studia Universitatis Babeş-Bolyai, Biologia, 46(1), 91-98.

Crăciun, C., Kis, E., Sandu, V.D., Paşca, C., Puică, C., Crăciun, V., & Madar, J. (1999c). Comparative studies of the adrenal cortex structure and ultrastructure in prepubertal rats treated with topical dermocorticosteroids, In: Ardelean, A., Crăciun, C., Current Problems in Cellular and Molecular Biology, 209-248, Risoprint, Cluj-Napoca.

Crăciun, C., Madar, J., Frăţilă, S., Crăciun, V., Miclăuş, V., Ardelean, A., & Ilyes, I. (1998a). Comparative study of thymus ultrastructure, thymolysis and thymus and blood-serum lipids contents in prepubertal rats treated with topical corticosteroids, In: Current Problems in Cellular and Molecular Biology (eds) Crăciun, C., Ardelean, A., 200-217, Risoprint, Cluj-Napoca.

Crăciun, C., Madar, J., Tarba, C., Frăţilă, S., Ardelean, A., Crăciun, V., & Ilyes, I. (1998b). Correlation between ultrastructural thymus modifications, thymolisis, thymus and blood-serum lipids contents in response to epicutaneously applied dermocorticoids in pubertal rats, In: Current Problems in Cellular and Molecular Biology (eds) Crăciun, C., Ardelean, A., 218-235, Risoprint, Cluj-Napoca.

Crăciun, C., Tarba, C., Madar, J., Ardelean, A., Şildan, N., Fărcaş, T., & Crăciun, V. (1997b). Study of the secondary effects induced by the topic application of Fluocinolone-acetonid N in the thymus ultrastructure of pubertal rats, In: (eds) Ardelean, A., Crăciun, C. Current Problems and Technique in Cellular and Molecular Biology, 187-199, Mirton, Timişoara.

Drake A.J., Raubenheimer, P.J., Kerrigan, D., McInnes, K.J., Seckl, J.R., & Walker, B.R. (2010). Prenatal dexamethasone programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not obesity on a high-fat diet. Endocrinology, 151, 1581-7.

Drake A.J, Tang J.I, & Nyirenda M.J. (2007). Mechanisms underlying the role of glucocorticoids in early life programming of adult disease. Clinical science, 113, 219-232.

Fu, J., Ma, S., Xin Li, An, Sh., Li, T., Guo, K., Lin, M., Qu, W., Wang, Sh., Dong, X., Han, X., Fu, T., Huang, X., Wang, T., & He, S. (2016). Long-term stress with hyperglucocorticoidemia induced hepatic steatosis with VLDL overproduction is dependent on both 5-HT2 receptor and 5-HT synthesis in liver. International journal of biologica sciences, 12(2), 219-234.

Gallo L.A., Tran M., Moritz K.M., Mazzuca M.Q., Parry L.J., Westcott, K.T., Jefferies, A.J., McEwen, L.A. C., & Wlodek, M.V. (2012). Cardiorenal and metabolic adaptations during pregnancy in female rats born small: implications for maternal health and second generation fetal growth. Journal of physiology, 590, 617–630.

Harris A., & Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Hormones and behavior, 59(3), 279-289.

Harvey, I., Stephenson, E.J., Redd, R.J., Tran, Q.T., Hochberg, I., Qi, N., & Bridges, D. (2017). Glucocorticoid-induced metabolic disturbances are exacerbated in obesity. Endocrinology, 159(6), 2275-2287.

Jeje, S.O., & Raji, Y. (2015). Effects of maternal dexamethasone exposure on hematological indices in the male offspring. International journal of biological chemical science. 9(1), 48-55.

Jeje, S.O., & Raji, Y. (2015). Effects of maternal Dexamethasone exposure during lactation on metabolic imbalance and oxidative stress in the liver of male offsprings of Wistar rats. Nigerian journal of physiology science. 30, 131-137.

Kapoor, A, Dunn, E, Kostak, A, Andrews, M.H, & Mathews, S.G. (2006). Fetal programming of hypothalamo - pituitary adrenal function: prenatal stress and glucocorticoids. Journal of physiology, 572, 31–44.

Kis, E., & András, P. (2017). Has the Fluocinolon-acetonid N ointment any effect on the kidneys and the thyroid gland structure and function? Studia Universitatis Babeş-Bolyai Biologia, 62(2), 41-52.

Kis, E., Puică, C., Paşca, C., Sandu, V.D., & Madar, I. (1999). Attenuation of the Fluocinolone-acetonid N induced histological alterations of hypothalamic-pituitary-adrenal axis by Propranolol in white Wistar rats. Studia Universitatis Babeş-Bolyai Biologia, 44(1-2), 127-134.

Kis, E., Puică, C., Sandu, V.D., Paşca, C., Crăciun, C., & Madar, I. (2000). Study on the histological alterations of hypothalamic-hypophyseal-adrenal axis induced by Dermovate-cream in Wistar prepubertal rats. Evolution and adaptation, 6, 199-206.

Koliwad, S.K., Kuo, T., Shipp, L.E., Gray, N.E., Backhed, F., So, A.Y.-L., Farese Jr, R.V., & Wang, I.C. (2009). Angiopoietin-like 4 (ANGPTL4, fasting-induced adipose factor) is a direct glucocorticoid receptor target and participates in glucocorticoid-regulated Triglyceride Metabolism. The journal of biological chemistry, 284(38), 25593– 25601.

Laugesen, K., Otto, J., Jrgensen, L., Srensen, H.T., & Petersen, I. (2017). Systemic glucocorticoid use in Denmark: a population-based prevalence study. British medical journal, 7:e015237. doi:10.1136/bmjopen-2016-015237.

Liu, Y-F., Wei, J-Y., Shi, M-H., Jiang, H., & Zhou, J. (2016). Glucocorticoid induces hepatic steatosis by inhibiting activating transcription Factor 3 (ATF3)/S100A9 protein signaling in granulocytic myeloid-derived suppressor cells. The journal of biological chemistry, 291(41), 21771–21785.

Main, K.M., Jensen, R.B., Asklund, C., HoiHansen, C.E., & Skakkebaek, N.E. (2006). Low birth weight and male reproductive function. Hormon researche in pediatrics, 65, 116–122.

Moritz K.M., De Matteo, R., Dodic, M., Jefferies, AJ., & Arena, D. (2011). Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure control. American Journal of physiology. Regular integrative comparativ physiology, 301, R500–509.

Mureşan, E., Gaboreanu, M., Bogdan, A.T., & Baba, A.I. (1974). Tehnici de histologie normală şi patologică. Ed. Ceres, Bucureşti.

Newton, R., Leigh, R., & Giembycz, M.A. (2010). Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacology & Therapeutics 125, 286–327.

O’Sullivan, L., Cuffe, J.S.M., Paravicini, T.M., Campbell, S., Dickinson, H., Singh, R.R., Gezmish, O., Black, J.M., & Moritz, K.M. (2013). Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring. Public Library of science, 8(7), 1-10.

Paragliola, R.M., Papi, G., Pontecorvi, A., & Corsello, S.M. (2017). Treatment with synthetic glucocorticoids and the hypothalamus-pituitary-adrenal axis. International journal of molecular science, 18(10), 2201; doi:10.3390/ijms18102201.

Pesonen, A.K., Raikkonen, K., Lano, Au., Peltoniemi, Ou., Hallman, M., & Kari, M. (2009). Antenatal betamethasone and fetal growth in prematurely born children: Implications for temperament traits at the age of 2 years. Pediatrics, 123(1), 31-37.

Rebeyrol, C., Saint-Criq, V., Guillot, Lo., Riffault, L., Harriet Corvol, H., Chadelat, K., Ray, D., Clement, A., Tabary, Ol., & Le Rouzic, P. (2012). Glucocorticoids reduce inflammation in cystic fibrosis bronchial epithelial cells. Cellular signaling, 24, 1093–1099.

Rose, A.J, Vegiopoulos, A, & Herzig, S. (2010). Role of Glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. The journal of steroid biochemistry and molecular biology, 122, 10-20.

Schäcke, H., Döcke, W-D., & Asadullah, K. (2002). Mechanisms involved in the side effects of glucocorticoids. Pharmacology & Therapeutics, 96, 23–43.

Seckl J. (2008) Glucocorticoids, developmental programming and the risk of affective dysfunction. Progress in brain researce, 167, 17–34.

Singh, R.R, Moritz, K.M, Bertram, J.F, & Cullen-McEwen, L.A. (2007). Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies. The American journal of physiology-Renal physiology, 293, F548–F554.

Singh, R.R, Cuffe, J.S.M., & Moritz, K.M. (2012). Short and long term exposure to natural and synthetic glucocorticoids during development. Proceeding of Australian physiological society, 43, 57-69.

Spies, C.M., Strehl, C., van der Goes, M.C., Bijlsma, J.W.J., & Buttgereit, F. (2011). Glucocorticoids. Best practice & Research clinical rheumatology 25, 891–900.

Tarantino, G., & Finelli, C. (2013). Pathogenesis of hepatic steatosis: The link between hypercortisolism and non-alcoholic fatty liver disease. World journal of gastroenterology, 19(40), 6735-6743.

Tegethoff, M., Pryse, C., & Meinlschmidt, G. (2009). Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn and infant hypothalamic-pituitary-adrenal axis function in human. Endocrine Reviews, 30(7), 753-789.

Vegiopoulos, A., & Herzig, S. (2007). Glucocorticoids, metabolism and metabolic diseases. Molecular and cellular endocrinology, 275, 43–61.

Wang, J.C., Gray, N.E., Kuo, T., & Harris, C.A. (2012). Regulation of triglyceride metabolism by glucocorticoid receptor. Cell&Bioscience 2(1):19. doi: 10.1186/2045-3701-2-19.

Woods, C.P., Hazlehurst, J.M., Jeremy, W., & Tomlinson, J.W. (2015). Glucocorticoids and non-alcoholic fatty liver disease. Journal of steroid biochemistry & Molecular biology 154, 94–103.

Woods, L.L., & Weeks, D.A. (2005). Prenatal programming of adult blood pressure: role of maternal corticosteroids. American Journal of physiology. Regulatory intergrative and comparative physiology, 289, R955–R962.

Yang, F., Dai, Y., Min, C., & Li, X. (2018). Neonatal overfeeding induced glucocorticoid overexposure accelerates hepatic lipogenesis in male rats. Nutrition and metabolism, https://doi.org/10.1186/s12986-018-0272-0.

Published

2019-12-10

Issue

Section

Research article