A comparative assessment of artificial and natural energy drinks in the epididymal and testicular milieu

Authors

  • Oluwakemi T. Oyelowo Department of Physiology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria. *Corresponding author: ooyelowo@unilag.edu.ng
  • Oluwapelumi I. Awosika Department of Physiology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria.
  • Taiwo H. Adesina Department of Physiology, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria.

DOI:

https://doi.org/10.24193/subbbiol.2022.2.02

Keywords:

energy drink, jaggery, sperm quality, steroidogenic enzymes, lactate dehydrogenase

Abstract

Artificial and natural energy drinks are both taken for increased energy, physical stamina, and alertness, although they differ in composition. This study investigated the effects of artificial and natural energy drinks on the testicular milieu in male pubertal rats.

Eighteen Wistar rats were randomly divided into 3 groups of 6 rats each and all animals had access to food ad libitum. Group 1: (control) received water only; Group 2: (artificial energy drink- AED) received AED; Group 3: (natural energy drink- NED) received NED. A dose of 1.41ml/day/150g animal was administered and this lasted for 28 days. Sperm and testicular variables, biochemical parameters, and hormonal assays were carried out. 

There were significant decreases in the levels of testosterone, Lactate dehydrogenase, glucose, 3β-Hydroxysteroid dehydrogenase, and 17β- Hydroxysteroid dehydrogenase activities in AED and NED groups when compared to the control group. There was a marked increment in sperm abnormalities in the NED group when compared to AED and control groups. Also, the intake of AED led to an elevated level of Glucose-6-phosphate dehydrogenase compared to the control while a significant reduction was observed in the NED group when compared to the AED group. Artificial and natural energy drinks although consumed for strength and vigor distorted epididymis and testicular integrity via alteration of the testicular metabolism, lowering sperm quality and androgenic hormones in pubertal male Wistar rats.

References

Adekunbi, D.A., Ogunsola, O.A., Oyelowo, O.T., Aluko, E.O, Popoola, A.A., & Akinboboye, O.O. (2016). Consumption of high sucrose and/or high salt diet alters sperm function in male Sprague–Dawley rats. Egypt. J. Basic Appl. Sci, 3 (2), 194-201. https://doi.org/10.1016/j.ejbas.2016.03.003.

Akomolafe, S.F., Oboh, G., Akindahunsi, A.A., & Afolayan, A.J. (2017). Ethanol-induced male infertility: Effects of aqueous leaf extract of Tetracarpidium conophorum. Andrologia, 00:e12759. https://doi.org/10.1111/and.12759.

Al-Eryani, F.S., Kelany, A.M., Amin, H.A., & Shazly, H.F. (2018). Histological and Physiological Studies on the Effects of Some Energy Drinks on Male Rats. Int. J. Pharm. Res. Allied Sci,7(1),165-176.

Anderson, H., & Woodend, G. (2003). Consumption of sugar and the regulation of short-term satiety and food intake. Am. J. Clin. Nutr, 73, 843S-849S.

Anuja, M.N., Nithya, R.N., Rajamanickam, C., & Madambath, I. (2010). Spermatotoxicity of a protein isolated from the root of Achyranthes aspera: a comparative study with gossypol. Contraception, 82(4),385-90. doi: 10.1016/j.contraception.2010.04.011.

Bukhar, H.M., ElSawy, N.A., & Header, E.A.(2012). Biological Effect of High Energy Drink on Normal and Hyperglycemic Rats. Pak. J. Nutr, 11, 301-309. doi: 10.3923/pjn.2012.301.309.

Campbell, B., Wilborn, C., La Bounty, P., Taylor, L., Nelson, M.T., Greenwood, M., Ziegenfuss, T.N., Lopez, H.L.,Hoffman, J.R., Stout, J.R., Schmitz, S., Collins, R. Kalman, D.S., Antonio, J., & Kreider, R.B. (2013). International society of sports nutrition position stand: energy drinks. J. Int. Soc. Sports Nutr, 10, 1. https://doi.org/10.1186/1550-2783-10-1.

Chen, W., Guo, J., Zhang, Y., & Zhang, J., (2016). The beneficial effects of taurine in preventing metabolic syndrome. Food Funct, 7(4), 1849–1863.

Correa, M., SanMiguel, N., López-Cruz, L., Carratalá-Ros, C., Olivares-García, R., & Salamone, J.D.(2018). Caffeine Modulates Food Intake Depending on the Context That Gives Access to Food: Comparison with Dopamine Depletion. Front. Psychiatry, 9, 411. doi:10.3389/fpsyt.2018.00411.

De Sanctis, V., Soliman, N., Soliman, A.T., Elsedfy, H., Di Maio, S., El Kholy, M., & Fiscina, B.(2017). Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: a significant public health hazard. Acta Biomed, 88(2): 222–231. DOI: 10.23750/ABM. v88i2.6664.

Dillon, P., Kelpin, S., Kendler, K., Thacker, L., Dick D., & Svikis, D. (2019). Gender Differences in Any-Source Caffeine and Energy Drink Use and Associated Adverse Health Behaviors. . Caffeine Adenosine Res, 9(1), 12–19. DOI: 10.1089/caff.2018.0008.

Driescher, N., Joseph, D. E., Human, V. R., Ojuka, E., Cour, M., Hadebe, N., Bester, D., Marnewick, J. L., Lecour, S., Lochner, A., & Essop, M. F. (2019). Corrigendum to "The impact of sugar-sweetened beverage intake on rat cardiac function" [Heliyon 5 (3) (March 2019) e01357]. Heliyon, 5(5), e01592. https://doi.org/10.1016/j.heliyon.2019.e01592.

Duchan, E., Patel, N.D., & Feucht, C. (2010). Energy drinks: a review of use and safety for athletes. Phys. Sportsmed, 38,171–179. DOI: 10.3810/psm.2010.06.1796.

El-Kashoury, A. A., Salama, A. F., Selim, A. I., & Mohamed, R. A.(2010).Chronic exposure of dicofol promotes reproductive toxicity in male rats. Life Sci, 7(3), 5–19.

Esteves, S.C. (2015). Male infertility due to spermatogenic failure: current management and future perspectives. Anim. Reprod, 12(1),62–80.

FAO (Food and Agriculture Organization of the United Nations)(1994. Definition and classification of commodities. 3. Sugar crops and sweeteners and derived products. Retrieved from http://www.fao.org/es/faodef/faodefe.htm.

Fields, S.K., MacDonald, J., Joseph, A.M., Wold, L.E., Collins, C.L., & Comstock, R.D.(2015). Consumption of sports and energy drinks by high school athletes in the United States: a pilot study. Beverages, (1), 218–224. https://doi.org/10.3390/ beverages1030218.

Friis, K., Lyng, J.I., Lasgaard, M., & Larsen, F.B. (2014). Energy drink consumption and the relation to socio-demographic factors and health behaviour among young adults in Denmark. A population-based study. Eur. J. Public Health, 24(5), 840–844. doi:10.1093/eurpub/cku003.

Gaby, A.R. (2005). Adverse effects of dietary fructose. Altern. Med. Rev, 10,294–306. http://archive.foundationalmedicinereview.com/publications/10/4/294.pdf.

Gatsing, D., Nkeugouapi, C.F.N., Nkah, B.F.N., Kuiate, J.R., & Tchouanguep, F.M.(2010). Antibacterial activity, bioavailability and acute toxicity evaluation of the leaf extract of Alchorneacordifolia (Euphorbiaceae). Int. J. Pharm, 6, 173–182.doi: 10.3923/ijp.2010.173.182.

Govardhan, N.A., & Changamma C. (2014). Antifertility efficacy of bitter leaf stalk extract in male albino rats. J. Adv. Res, 2(3), 97–102.

Graneri, L.T., Mamo, J.C.L., D’Alonzo, Z., Lam, V., & Takechi, R. (2021). Chronic Intake of Energy Drinks and Their Sugar Free Substitution Similarly Promotes Metabolic Syndrome. Nutrients, 13(4), 1202. https://doi.org/10.3390/nu13041202.

Harpaz, E., Tamir, S., Weinstein, A., & Weinstein, Y. (2017). The effect of caffeine on energy balance. J. Basic Clin. Physiol. Pharmacol, 28(1), 1–10. doi:10.1515/jbcpp-2016-0090.

Heckman, M.A., Weil, J., & Mejia, E.G.(2010). Caffeine (1, 3, 7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci, 75,75–87.doi: 10.1111/j.1750-3841.2010.01561. x.

Jaffé, W.R. (2015). Nutritional and functional components of noncentrifugal cane sugar: A compilation of the data from the analytical literature. J. Food Compost. Anal, 43, 194–202. doi:10.1016/j.jfca.2015.06.007.

Kamal, R., Yadav, R., & Sharma, J. D. (1993). Efficacy of the steroidal fraction of fenugreek seed extract on fertility of male albino rats. Phytother. Res,7(2), 134–138.

Karvonen, M.J., & Malm, M. (1955). Colorimetric determination of fructose with indol. Scand. .J Clin. Lab. Invest, 7,305–307.

Kawasaki, T., Kashiwabara A., Sakai T., Igarashi K., Ogata N., & Watanabe H. (2005). Long-term sucrose-drinking causes increased body weight and glucose intolerance in normal male rats. Br. J. Nutr, 93, 613–618.

Keaver, L., Gilpin, S., Fernandes da Silva, J.C., Buckley, C., & Foley-Nolan, C. (2017). Energy drinks available in Ireland: a description of caffeine and sugar content. Public Health Nutr, 20,1534–1539. DOI: 10.1017/S1368980017000362.

Kumar, A., & Singh, S. (2019). The benefit of Indian jaggery over sugar on human health. In: Dietary Sugar, Salt, and Fat in Human Health pp. 1-12. DOI: 10.1016/B978-0-12-816918-6.00016-0.

Kuramori, C., Hase, Y., Hoshikawa, K., Watanabe, K., Nishi, T., Hishiki, T., Soga, T., Nashimoto, A., Kabe, Y., Yamaguchi, Y., Watanabe, H., Kataoka, K., Suematsu, M., & Handa, H. (2009). Mono-(2-ethylhexyl) phthalate targets glycogen debranching enzyme and affects glycogen metabolism in rat testis. Toxicol. Sci, 109(1), 143-151. https://doi.org/10.1093/toxsci/kfp041.

Lavin, J.H., French, S.J. , Ruxton, C.H., & Read, N.W. (2002). An investigation of the role of oro-sensory stimulation in sugar satiety. Int. J. Obes. Relat. Metab. Disord, 26, 384-388.

Munteanu C., Uţiu, I., Roşioru, C.L., & Lang, C. (2014). Chronic administration of red bull affects blood parameters in rats. Studia UBB Biologia, 2, 89-98.

Nath, A., Dutta, D., Kumar, P., & Singh, J.P. (2015). Review on recent advances in value addition of jaggery based products. J. Food Process. Tech, 6, 4. doi: 10.4172/2157-7110.1000440.

Nallella, K.P., Sharma, R.K., Aziz, N., & Agarwal, A. (2006). Significance of sperm characteristics in the evaluation of male infertility. Fertil. Steril, 85(3),629-634. doi: 10.1016/j.fertnstert.2005.08.024.

Patel, M., Sharma, R.J., Kumar,S., Kumar, A., Tiwari, D. P., & Kumar, R. (2011). Effect of feeding different levels of jaggery filter cake on blood biochemical and mineral profile in Yorkshire pigs. Indian J. Anim. Sci, 81 (2), 180.

Rao, G.P., & Singh, P. (2022). Value Addition and Fortification in Non-Centrifugal Sugar (Jaggery): A Potential Source of Functional and Nutraceutical Foods. Sugar Tech, 24, 387–396. https://doi.org/10.1007/s12355-021-01020-3.

Rebourcet, D., Mackay, R., Darbey, A., Curley, M.K., Jørgensen, A., Frederiksen, H., Mitchell, R.T., O'Shaughnessy, P.J., Nef, S., & Smith, L.B. (2020). Ablation of the canonical testosterone production pathway via knockout of the steroidogenic enzyme HSD17B3, reveals a novel mechanism of testicular testosterone production. FASEB J, 34(8),10373-10386. doi: 10.1096/fj.202000361R.

Reissig, C.J., Strain, E.C., & Griffiths, R.R. (2009). Caffeinated energy drinks-a growing problem. Drug Alcohol Depend, 99(1-3),1-10. doi: 10.1016/j.drugalcdep.2008.08.001.

Schuchowsky, E., Schaefer, D., Salvador, R.A., do Nascimento, A.E., Til, D., Senn, A.P., & Amaral, V.L.L.(2017). Effects of energy drinks on biochemical and sperm parameters in Wistar rats. Nutrire, 42(1), 1-7. doi:10.1186/s41110-017-0047-9.

Tappy, L, & Lê K.A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev, 90,23-46, 10.1152/physrev.00019.2009.

Togo, J., Hu, S., Li, M., Niu, C., & Speakman, J. R. (2019). Impact of dietary sucrose on adiposity and glucose homeostasis in C57BL/6J mice depends on mode of ingestion: liquid or solid. Mol. Metab, 27, 22–32. https://doi.org/10.1016/j.molmet.2019.05.010.

Zhang, Z., Yang, Z., Zhu, B., Hu, J., Liew, C.W., Zhang, Y., & Stanton, R.C. (2012). Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS ONE, 7(11), e49128. doi.org/10.1371/journal.pone.0049128.

Downloads

Published

2022-12-22

Issue

Section

Research article

Categories