In silico modeling and analysis of squalene synthase-like 1 (SSL-1) enzyme from green microalga Botryococcus terribilis AICB 872

Authors

  • Tiberiu SZÖKE-NAGY Babeș-Bolyai University, Faculty of Biology and Geology, Cluj-Napoca, Romania; Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. https://orcid.org/0000-0003-1773-3991
  • Sebastian Alin PORAV Babeș-Bolyai University, Faculty of Biology and Geology, Cluj-Napoca, Romania; Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. https://orcid.org/0000-0003-4238-0083
  • Nicolae DRAGOȘ Babeș-Bolyai University, Faculty of Biology and Geology, Cluj-Napoca, Romania; Institute of Biological Research, branch of the National Institute of R&D for Biological Sciences Bucharest, Cluj-Napoca, Romania. * Corresponding author: dragos.nicolae@ubbcluj.ro

DOI:

https://doi.org/10.24193/subbbiol.2020.1.01

Keywords:

Botryococcus terribilis, squalene synthase-like 1, 3D structure prediction, AICB strain, biofuel.

Abstract

The genus Botryococcus contains a small number of green, colonial algae, with some taxa still uncertain. B. braunii is the most extensively studied species of the genus because of its hydrocarbon oils which can be used as an alternative energy source. Some B. terribilis AICB strains were previously described showing their ability to synthesize C30–C32 botryococcenes similar to those produced by chemical race B of B. braunii strains. The present study aimed to investigate the structural features of SSL-1 enzyme involved in the biosynthesis of presqualene diphosphate from B. terribilis AICB 872, and its functional conservation by means of computational proteomics and molecular biology techniques. Using PCR amplification we obtained a 3811bp contig containing the sequence of SSL-1 gene. The homology modeling analysis revealed the presence of alpha helical structures and a small beta sheet which are forming the SSL-1 catalytic core. Coil structures and both N and C terminus regions of the protein are characterized by highly disordered structural fragments. Finally, our data integrated within the available information in the literature allowed us to presume that the formation of presqualene diphosphate, the first step of hydrocarbon biosynthesis in B. terribilis strain occurs in a similar fashion with that described in B. braunii.

Szoke-Nagy et al (PDF)

References

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25.

Achitouv, E., Metzger, P., Rager, M.N., & Largeau, C. (2004). C31 - C34 methylated squalenes from a bolivian strain of Botryococcus braunii. Phytochem., 65(23), 3159-3165.

Al-Hothaly, A. K. (2018). An optimized method for the bio-harvesting of microalgae, Botryococcus braunii, using Aspergillus sp. in large-scale studies. MethodsX, 5, 788-794.

Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res., 44:W344-W350.

Bell, S. A., Niehaus, T. D., Nybo, E., & Chapell, J. (2014). Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B. Biochemistry, 53(48), 7570-7581.

Canutescu, A. A., & Dunbrack, R. L. (2003). Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci., 12(5), 963–972.

Chen, V. B., Arendall III, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapra, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2009). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D, 66(Pt 1), 12-21.

Dragoș, N., Peterfi, L. Ș., Momeu, L., & Popescu, C. (1997). An introduction to the algae and the culture collection of algae – At the Institute of Biological Research Cluj-Napoca. Cluj University Press, Cluj-Napoca, 267 pp.

Elumalai, S., Sangeetha, T., & Rajesh Kanna, G. (2018). In silico modeling and characterization of squalene synthase and botryococcene synthase enzymes from a green photosynthetic microalga Botryococcus braunii. J. Pet. Environ. Biotechnol., 9, 3.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 31(13), 3784-3788.

Gu, P., Ishii, Y., Spencer, T. A, & Shechter, I. (1998). Function-structure studies and identification of three enzyme domain involved in the catalytic activity in rat hepatic squalene synthase. J. Biol. Chem., 273(20), 12515-12525.

Guiry, M. D., & Guiry, G. M. (2019). AlgaeBase, World-wide electronic publication, National University of Ireland, Galway, http://www.algaebase.org/

Hegedűs, A., Mocan, A., Barbu-Tudoran, L., Coman, C., Drugă, B., Sicora, C., & Dragoș, N. (2014). Morphological, biochemical, and phylogenetic assessments of eight Botryococcus terribilis strains collected from freshwaters of Transylvania. J. Appl. Phycol., 27(2), 865-878.

Heo, L., & Feig, M. (2018). PREFMD: a web server for protein structure refinement via molecular dynamics simulations. Bioinformatics, 34(6), 1063-1065.

Hillen, L. W., & Wake, L. V. (1979). Solar oil [microform]: liquid hydrocarbon fuels from solar energy via algae, First National Conference of Australian Institute of Energy, The University of Newcastle, 5th-9th February.

Hunag, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem., 34(25), 2135-2145.

Huang, Z., & Poulter, C. D. (1989). Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochem., 28(5), 1467-1470.

Jendele, L., Krivák, R., Škoda, P., Novotný, M., & Hoksza, D. (2019). PrankWeb: a web server for ligand binding site prediction and visualization, Nucleic Acids Res., 47(W1), W345-W349.

Kawachi, M., Tanoi, T., Demura, M., Kaya, K., & Watanabe, M. M. (2012). Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res., 1(2), 114-119.

Krivák, R., & Hoksza, D. (2018). P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminformatics, 10(1), 39.

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7), 1870-1874.

Lawrence, A. K., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 10(6), 845-858.

Lee, S., & Poulter, C. D. (2008). Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongates BP-1, J. Bacteriol., 190(11), 3808 – 3816.

Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., & Kim, Y. S. (2004). Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol., 45(8), 976- 984.

Lovell, S. C., Davis, I. W., Arendall III, W. B., de Bakker, P. I. W., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson D. C. (2003). Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 50(3), 437-450.

Metzger, P., & Largeau, C. (2005). Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biot., 66(5), 486-496.

Metzger, P., Allard, B., Casadevall, E., Berkaloff, C., & Coute, A. (1990). Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J. Phycol., 26(2), 258-266.

Metzger, P., & Casadevall, E. (1987). Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett., 28(34), 3931-3934.

Metzger, P., Templier, J., Largeau, C., & Casadevall, E. (1986). An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochem., 25(8), 1869-1872.

Metzger, P., Casadevall, E., Pouet, M. J., & Pouet, Y. (1985). Structures of some botryococcenes: branched hydrocarbons from the B race of the green alga Botryococcus braunii, Phytochem., 24(12), 2995-3002.

Niehaus, T. D., Okada, S., Devarenne, T. P., Watt, D. S., Sviripa, V., & Chappell, J. (2011). Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. PNAS, 108(30), 12260-12265.

Pandit, J., Danley, D. E., & Schulte, G. K. (2000). Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J. Biol. Chem., 275(39), 30610-30617.

Park, J., Matralis, A. N., Berghuis, A. M., & Tsantrizos, Y. S. (2014). Human isoprenoid synthase enzymes as therapeutic targets. Front. Chem., 2: 10.3389/fchem.2014.

Petersen, H. I., Rosenberg, P., & Nytoft, H. P. (2008). Oxygen groups in coals and alginite-rich kerogen revisited. Int. J. Coal Geol., 74(2), 93-113.

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem., 25(13), 1605-1612.

Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2012). HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods, 9, 173–175.

Rong, Q., Jiang, D., Chen, Y., Shen, Y., Yuan, Q., Lin, H., Zha, L., Zhang, Y., & Hunag, L. (2016). Molecular cloning and functional analysis of squalene synthase 2(SQS2) in Salvia miltiorrhiza Bunge. Front. Plant Sci., 7:1274.

Seo, J. W., Jeong, J. H., Shin, C. G., Lo, S. C., Han, S. S., Yu, K. W., Harada, E., Han, J. Y., & Choi, Y. E., (2005). Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochem., 66(8), 869-877.

Söding, J. (2005). Protein homology detection by HMM-HMM comparison,. Bioinformatics, 21(7), 951–960.

Szoke-Nagy, T., Hegedűs, A., Baricz, A., Chiriac, C., Szekeres E., Coman, C., & Dragoș, N. (2015). Identification, isolation and bioinformatic analysis of squalene synthase-like cDNA fragments in Botryococcus terribilis AICB 870 Strain. Studia UBB Biologia. LX(1), 23-37.

Thapa, H. R., Naik, M. T., Okada, D., Takada, K., Molnár, I., Xu. Y., & Devarenne, T. P. (2016). A squalene synthase-like enzyme initiates production of tetraterpenoid hydrocarbons in Botryococcus braunii Race L. Nat. Commun., 7:e11198.

Wei, X., & Sahinidis, N. V. (2006). Residue-rotamer-reduction algorithm for the protein side-chain conformation problem. Bioinformatics, 22(2), 188–194.

Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 35, W407-W410.

Published

2020-06-30

Issue

Section

Research article