Pseudomonas aeruginosa at the dawn of a post-antibiotic era: clinical significance, resistance mechanisms, novel antibiotics and alternative treatments

Authors

  • Orsolya KOVÁCS Babeș-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania.
  • Endre JAKAB Babeș-Bolyai University, Faculty of Biology and Geology, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania. *Corresponding author: endre.jakab@ubbcluj.ro https://orcid.org/0000-0002-3100-7083

DOI:

https://doi.org/10.24193/subbbiol.2020.2.03

Keywords:

antibiotic resistance, Pseudomonas aeruginosa, Pseudomonas infections, resistance mechanisms, novel antibiotics.

Abstract

Since their discovery, antibiotics have helped treat diseases prior to which many were untreatable, saving millions of lives. However, due to the overuse of antibiotics in medicine and agriculture, the advent of resistant strains of bacteria followed shortly after. The current antibiotic resistance crisis is bringing humanity closer to a post-antibiotic era, when all the advancements made by modern medicine could easily be reversed. Pseudomonas aeruginosa is a Gram-negative, rod-shaped bacterium, ubiquitous owing to its minimal nutritional and growth requirements. P. aeruginosa is one of the pathogens included in the priority list of the WHO, being assessed as critical due to its high antimicrobial resistance, leaving only a few effective treatment options to combat it. As an opportunistic pathogen, P. aeruginosa establishes infection in immunocompromised patients, primarily in hospital settings. In order to initiate infection, it requires several virulence factors that mediate the invasion of the pathogen into host cells. Owing to the multiple resistance mechanisms of P. aeruginosa, it has developed resistance to most classes of antibiotics. Due to its increased resistance, treating P. aeruginosa infections is a great challenge for clinicians. Several β-lactam/
β-lactamase combinations have been approved and are available as treatment options, which overall show high efficacy against P. aeruginosa. Moreover, novel antibiotics are currently in development as possible antipseudomonal agents, including a Pseudomonas-specific formulation. In addition, new strategies such as bacteriophage therapy, pyocins or the inhibition of the quorum sensing system are being investigated for the treatment of P. aeruginosa infections.

Kovacs et Jakab (PDF)

Article history: Received 8 September 2020; Revised 11 November 2020; Accepted 3 December 2020; Available online 20 December 2020

References

Al-Wrafy, F., Brzozowska, E., Górska, S., & Gamian, A. (2017). Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Higieny i Medycyny Doswiadczalnej, 71(February), 78–91. doi:10.5604/01.3001.0010.3792

Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discovery Today, 24(1), 350–359. doi:10.1016/j.drudis.2018.07.003

Balasubramanian, D., Schneper, L., Kumari, H., & Mathee, K. (2013). A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res, 41(1), 1–20. doi:10.1093/nar/gks1039

Banin, E., Hughes, D., & Kuipers, O. P. (2017). Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol Rev, 41(3), 450–452. doi:10.1093/femsre/fux016

Baron, S., Hadjadj, L., Rolain, J. M., & Olaitan, A. O. (2016). Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents, 48(6), 583–591. doi:10.1016/j.ijantimicag.2016.06.023

Borisova, M., Gisin, J., & Mayer, C. (2014). Blocking Peptidoglycan Recycling in Pseudomonas aeruginosa Attenuates Intrinsic Resistance to Fosfomycin. Microb Drug Resist, 20(3), 231–237. doi:10.1089/mdr.2014.0036

Bott, M., & Holland, S. (2020). AMR Action Fund. Retrieved from https://amractionfund.com/

Cascella, P. N. (2019). Beta lactam antibiotics. StatPearls. Treasure Island (FL): StatPearls Publishing. doi:10.1016/j.actpha.2016.06.001

CDC. (2013). Antibiotic Resitance Threats in the United States, 2013. doi:/10.1016/j.medmal.2007.05.006

CDC. (2017). Antibiotic Use in the United States, 2017: Progress and Opportunities. US Department of Health and Human Services. Atlanta, GA: US Department of Health and Human Services. Retrieved from https://www.cdc.gov/antibiotic-use/stewardship-report/pdf/stewardship-report.pdf

Chang, Y., Wang, P. C., Ma, H. M., Chen, S. Y., Fu, Y. H., Liu, Y. Y., Wang, X., Yu, G. C., Huang, T., Hibbs, D. E., Zhou, H. B., Chen, W. M., Lin, J., Wang, C., Zheng, J. X., Sun, P. H. (2019). Design, synthesis and evaluation of halogenated furanone derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. Eur J of Pharm Sci, 140(August), 105058. doi:10.1016/j.ejps.2019.105058

Chanishvili, N., & Aminov, R. (2019). Bacteriophage therapy: Coping with the growing antibiotic resistance problem. Microbiol Aust, 40(1), 5–7. doi:10.1071/MA19011

Ciofu, O., & Tolker-Nielsen, T. (2019). Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Front Microbiol, 10(MAY). doi:10.3389/fmicb.2019.00913

De Bentzmann, S., Roger, P., Dupuit, F., Bajolet-Laudtnat, O., Fuchey, C., Plotkowski, M. C., & Puchelle, E. (1996). Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun, 64(5), 1582–1588. doi:10.1128/iai.64.5.1582-1588.1996

De Kievit, T. R. (2009). Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol, 11(2), 279–288. doi:10.1111/j.1462-2920.2008.01792.x

Debarbieux, L., Leduc, D., Maura, D., Morello, E., Criscuolo, A., Grossi, O., Balloy, V., Touqui, L. (2010). Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. JID, 201(7), 1096–1104. doi:10.1086/651135

Dijkmans, A. C., Zacarías, N. V. O., Burggraaf, J., Mouton, J. W., Wilms, E. B., van Nieuwkoop, C., Touw, D. J., Stevens, J., Kamerling, I. M. C. (2017). Fosfomycin: Pharmacological, clinical and future perspectives. Antibiotics, 6(4), 1–17. doi:10.3390/antibiotics6040024

Doi, Y., Wachino, J. I., & Arakawa, Y. (2016). Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect Dis Clin N Am, 30(2), 523–537. doi:10.1016/j.idc.2016.02.011

Donowitz, G. R., & Mandell, G. L. (1988). Beta-lactam antibiotics. N Engl J Med, 318, 419–426.

Driscoll, J. A., Brody, S. L., & Kollef, M. H. (2007). The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 67(3), 351–368. doi:10.2165/00003495-200767030-00003

ECDC. (2019). Surveillance of antimicrobial resistance in Europe 2018. Surveillance Report. doi:/10290035994

Fair, R. J., & Tor, Y. (2014). Perspectives in Medicinal Chemistry Antibiotics and Bacterial Resistance in the 21st Century. Perspect Medicin Chem, 6, 25–64. doi:10.4137/PMC.S14459.Received

Falagas, M. E., Athanasaki, F., Voulgaris, G. L., Triarides, N. A., & Vardakas, K. Z. (2019). Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int J Antimicrob Agents, 53(1), 22–28. doi:10.1016/j.ijantimicag.2018.09.013

Falagas, M. E., Vouloumanou, E. K., Samonis, G., & Vardakas, K. Z. (2016). Fosfomycin. Clin Microbiol Rev, 29(2), 321–347. doi:10.1128/CMR.00068-15.Address

Forge, A., & Schacht, J. (2000). Aminoglycoside antibiotics. Audiol Neurootol, 5, 3–22. doi:10.1002/9783527678679.dg00403

Fujitani, S., Sun, H. Y., Yu, V. L., & Weingarten, J. A. (2011). Pneumonia due to Pseudomonas aeruginosa: Part I: Epidemiology, clinical diagnosis, and source. Chest, 139(4), 909–919. doi:10.1378/chest.10-0166

Ghazaei, C., Ahmadi, M., & Jazani, N. H. (2010). Detection of neuraminidase activity in Pseudomonas aeruginosa PAO1. Iran J Basic Med Sci, 13(3), 69–75. doi:10.22038/ijbms.2010.5087

Golemi-Kotra, D. (2008). Pseudomonas infections. XPharm, 1–8. doi:10.1016/B978-008055232-3.63828-0

Green, E. R., & Mecsas, J. (2016). Bacterial Secretion Systems: An Overview. Microbiol Spectr, 4(1). doi:10.1128/microbiolspec.vmbf-0012-2015

Haidar, G., Philips, N. J., Shields, R. K., Snyder, D., Cheng, S., Potoski, B. A., Doi, Y., Hao, B., Press, E. G., Cooper, V. S., Clancy, C. J., Nguyen, M. H. (2017). Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin Infect Dis, 65(1), 110–120. doi:10.1093/cid/cix182

Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., Davey, A. K., Chess-Williams, R., Kiefel, M. J., Arora, D., Grant, G. D. (2016). Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8(8), 1–14. doi:10.3390/toxins8080236

Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410(6832), 1099–1103. doi:10.1038/35074106

Hirsch, E. B., & Tam, V. H. (2010). Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res, 10(4), 441–451. doi:10.1586/erp.10.49

Horcajada, J., Milagro Montero, Oliver, A., Sorlí, L., Sònia Luque, Gómez-Zorrilla, S., Benito, N., Grau, S. (2019). Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev, 32(4), 1–52.

Jones, A., & Holland, S. (2020). New AMR Action Fund steps in to save collapsing antibiotic pipeline with pharmaceutical industry investment of US$1 billion – IFPMA. International Federation of Pharmaceutical Manufacturers & Associations, (July), 20–22. Retrieved from https://www.ifpma.org/resource-centre/new-amr-action-fund-steps-in-to-save-collapsing-antibiotic-pipeline/?linkId=100000013447572

Khan, A. (2020). Doctor’s Note: How COVID-19 is increasing antibiotic resistance | Coronavirus pandemic | Al Jazeera. Retrieved November 7, 2020, from https://www.aljazeera.com/indepth/features/doctor-note-covid-19-increasing-antibiotic-resistance-200608151154225.html?fbclid=IwAR2B8BgK42ZUQOhRWzDNgVlvrztn85bjhlpWk-z6_UX57xQWugEA15n6mqU

Kharazmi, A. (1991). Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett, 30, 201–205.

Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jørgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 48(6), 1511–1524. doi:10.1046/j.1365-2958.2003.03525.x

Lamas Ferreiro, J. L., Álvarez Otero, J., González González, L., Novoa Lamazares, L., Arca Blanco A., Bermúdez Sanjurjo, J. R., Rodríguez Conde, I., Fernández Soneira, M., de la Fuente Aguado, J. (2017). Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors. PLoS ONE, 12(5), 1–13.

Landecker, H. (2016). Antibiotic Resistance and the Biology of History. Body Soc, 22(4), 19–52. doi:10.1177/1357034X14561341

Lister, P. D., Wolter, D. J., & Hanson, N. D. (2009). Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev, 22(4), 582–610. doi:10.1128/CMR.00040-09

Mangalea, M. R., & Duerkop, B. A. (2020). Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect Immun, 88(7), 1–15. doi:10.1128/IAI.00926-19

Maraolo, A. E., Mazzitelli, M., Trecarichi, E. M., Buonomo, A. R., Torti, C., & Gentile, I. (2020). Ceftolozane/tazobactam for difficult-to-treat Pseudomonas aeruginosa infections: A systematic review of its efficacy and safety for off-label indications. J Antimicrob Agents, 55(3), 105891. doi:10.1016/j.ijantimicag.2020.105891

Maurice, N. M., Bedi, B., & Sadikot, R. T. (2018). Pseudomonas aeruginosa biofilms: Host response and clinical implications in lung infections. Am J Respir Cell Mol Biol, 58(4), 428–439. doi:10.1165/rcmb.2017-0321TR

Mclaughlin, M. I., & Donk, W. A. Van Der. (2020). The Fellowship of the Rings: Macrocyclic Antibiotic Peptides Reveal an Anti-Gram-Negative Target. Biochemistry, 59(343–345), 2019–2021. doi:10.1021/acs.biochem.9b01086

Miller, J. K., Badawy, H. T., Clemons, C., Kreider, K. L., Wilber, P., Milsted, A., & Young, G. (2012). Development of the Pseudomonas aeruginosa mushroom morphology and cavity formation by iron-starvation: A mathematical modeling study. J Theor Biol, 308, 68–78. doi:10.1016/j.jtbi.2012.05.029

Mittal, R., Aggarwal, S., Sharma, S., Chhibber, S., & Harjai, K. (2009). Urinary tract infections caused by Pseudomonas aeruginosa: A minireview. J Infect Public Health, 2(3), 101–111. doi:10.1016/j.jiph.2009.08.003

Moffat, J. H., Harper, M., & Boyce, J. D. (2019). Polymyxin Antibiotics: From Laboratory Bench to Bedside. In Springer Nature Switzerland (Vol. 1145, pp. 1–8). doi:10.1007/978-3-030-16373-0

Morrison, A. J., & Wenzel, R. P. (1984). Epidemiology of infections due to Pseudomonas aeruginosa. Rev Infect Dis, 6 Suppl 3(October). doi:10.1093/clinids/6.supplement_3.s627

Nature Editorial. (2020). Antimicrobial resistance in the age of COVID-19. Nat Microbiol, 5(6), 779. doi:10.1038/s41564-020-0739-4

Neves, P. R., McCulloch, J. A., Mamizuka, E. M., & Lincopan, N. (2014). Pseudomonas: Pseudomonas aeruginosa. Encyclopedia of Food Microbiology: Second Edition, 3, 253–260. doi:10.1016/B978-0-12-384730-0.00283-4

Nguyen, L., Garcia, J., Gruenberg, K., & MacDougall, C. (2018). Multidrug-Resistant Pseudomonas Infections: Hard to Treat, But Hope on the Horizon? Curr Infect Dis Rep, 20(8). doi:10.1007/s11908-018-0629-6

O’Neall, D., Juhász, E., Tóth, Á., Urbán, E., Szabó, J., Melegh, Sz., Katona, K., Kristóf, K. (2020). Ceftazidime–avibactam and ceftolozane–tazobactam susceptibility of multidrug resistant Pseudomonas aeruginosa strains in Hungary. Acta Microbiol Immunol Hung, 67(1), 61–65. doi:10.1556/030.2020.01152

Oechslin, F. (2018). Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses, 10(7). doi:10.3390/v10070351

Olaitan, A. O., Morand, S., & Rolain, J. M. (2014). Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front Microbiol, 5(NOV), 1–18. doi:10.3389/fmicb.2014.00643

Oluyombo, O., Penfold, C. N., & Diggle, S. P. (2019). Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. MBio, 10(1), 1–13. doi:10.1128/mBio.01828-18

Pál, T. (2013). Az Orvosi Mikrobiológia Tankönyve. Budapest: Medicina Könyvkiadó.

Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv, 37(1), 177–192. doi:10.1016/j.biotechadv.2018.11.013

Papp, J. (2015). Orvosi Mikrobiológia (jegyzet). Kolozsvár.

Perry, J., Waglechner, N., & Wright, G. (2016). The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med, 6(6). doi:10.1101/cshperspect.a025197

Planet, P. J. (2017). Pseudomonas aeruginosa. Principles and Practice of Pediatric Infectious Diseases (Fifth Edit). Elsevier Inc. doi:10.1016/B978-0-323-40181-4.00155-9

Poole, K. (2004). Resistance to β-lactam antibiotics. Cell Mol Life Sci, 61(17), 2200–2223. doi:10.1007/s00018-004-4060-9

Poole, K. (2005). Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemoter, 49(2), 479–487. doi:10.1128/AAC.49.2.479-487.2005

Poole, K. (2011). Pseudomonas aeruginosa: Resistance to the max. Front Microbiol, 2(APR), 1–13. doi:10.3389/fmicb.2011.00065

Redero, M., López-Causapé, C., Aznar, J., Oliver, A., Blázquez, J., & Prieto, A. I. (2018). Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. J Antimicrob Chemother, 73(10), 2770–2776. doi:10.1093/jac/dky261

Romano, K. P., Warrier, T., Poulsen, B. E., Nguyen, P. H., Loftis, A. R., Saebi, A., Pentelute, B. L., Hung, D. T. (2019). Mutations in pmrB Confer Cross-Resistance between the LptD Inhibitor POL7080 and Colistin in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 63(9), 1–6. doi:10.1128/AAC.00511-19

Rossolini, G. M., Arena, F., Pecile, P., & Pollini, S. (2014). Update on the antibiotic resistance crisis. Curr Opin Pharmacol, 18, 56–60. doi:10.1016/j.coph.2014.09.006

Sader, H. S., Dale, G. E., Rhomberg, P. R., & Flamm, R. K. (2018). Antimicrobial activity of murepavadin tested against clinical isolates of Pseudomonas aeruginosa from the United States, Europe, and China. Antimicrob Agents Chemother, 62(7), 1–6. doi:10.1128/AAC.00311-18

Sadikot, R. T., Blackwell, T. S., Christman, J. W., & Prince, A. S. (2005). Pathogen-Host Interactions in Pseudomonas aeruginosa Pneumonia RESPIRATORY INFECTIONS. Am J Respir Crit Care Med, 171(11), 1209–1223. doi:10.1164/rccm.200408-1044SO

Sato, T., & Yamawaki, K. (2019). Cefiderocol: Discovery, Chemistry, and in Vivo Profiles of a Novel Siderophore Cephalosporin. Clin Infect Dis, 69(Suppl 7), S538–S543. doi:10.1093/cid/ciz826

Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiol, 63(4), 413–432. doi:10.1007/s12223-018-0585-4

Smith, J. R., Rybak, J. M., & Claeys, K. C. (2020). Imipenem-Cilastatin-Relebactam: A Novel β-Lactam–β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy, 40(4), 343–356. doi:10.1002/phar.2378

Spencer, C., & Brown, H. A. (2015). Biochemical characterization of a Pseudomonas aeruginosa phospholipase d. Biochemistry, 54(5), 1208–1218. doi:10.1021/bi501291t

Spohn, R. (2018). A bakteriális antibiotikum rezisztencia de novo evolúciója és járulékos következményei Ph . D . értekezés.

Stone, G. G., Newell, P., Gasink, L. B., Broadhurst, H., Wardman, A., Yates, K., Chen, Zhangjing, Song, J., Chow, J. W. (2018). Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother, 73(June), 2519–2523. doi:10.1093/jac/dky204

Storek, K. M., Chan, J., Vij, R., Chiang, N., Lin, Z., Bevers, J., Koth, C. M., Vernes, J. M., Meng, Y.G., Yin, J., Wallweber, H., Dalmas, O., Shriver, S., Tam, C., Schneider, K., Seshasayee, D., Nakamura, G., Smith, P. A., Payandeh, J., Koerber, J. T., Comps-Agrar, L., Rutherford, S. T. (2019). Massive antibody discovery used to probe structure–function relationships of the essential outer membrane protein lptd. ELife, 8, 1–20. doi:10.7554/eLife.46258.001

Strateva, T., & Mitov, I. (2011). Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol, 61(4), 717–732. doi:10.1007/s13213-011-0273-y

Strateva, T., & Yordanov, D. (2009). Pseudomonas aeruginosa - A phenomenon of bacterial resistance. J Med Microbiol, 58(9), 1133–1148. doi:10.1099/jmm.0.009142-0

Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Oullette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, Nalini, Theuretzbacher, U., Magrini, N. and the WHO Pathogen Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis, 18(3), 318–327. doi:10.1016/S1473-3099(17)30753-3

The Pew Charitable Trusts. (2014). Antibiotics Currently in Clinical Development. Retrieved from http://www.pewtrusts.org/en/multimedia/data-visualizations/2014/antibiotics-currently-in-clinical-development

Todar, K. (2004). Todar’s online textbook of bacteriology. Retrieved from http://www.textbookofbacteriology.net/pseudomonas.html

Tümmler, B. (2019). Emerging therapies against infections with Pseudomonas aeruginosa [version 1; peer review: 2 approved]. F1000Research, 8, 1–14. doi:10.12688/f1000research.19509.1

Ventola, L. C. (2019). The Antibiotic Resistance Crisis Part 1: Causes and Threats. PT, 40(4), 277–283. doi:10.24911/ijmdc.51-1549060699

WHO. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. doi:/10.4103/jms.jms_25_17

Wu, W., Jin, Y., Bai, F., & Jin, S. (2014). Pseudomonas aeruginosa. Molecular Medical Microbiology: Second Edition (Vol. 2–3). Elsevier Ltd. doi:10.1016/B978-0-12-397169-2.00041-X

Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., & Hossain, N. (2017). A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 9(6). doi:10.7759/cureus.1403

Zhanel, G. G., Chung, P., Adam, H., Zelenitsky, S., Denisuik, A., Schweizer, F., Lagacé-Wiens, P. R. S., Rubinstein, E., Gin, A. S., Walkty, A., Hoban, D. J., Lynch, J. P., Karlowsky, J. A. (2014). Ceftolozane/tazobactam: A novel cephalosporin/β-lactamase inhibitor combination with activity against multidrug-resistant gram-negative bacilli. Drugs, 74(1), 31–51. doi:10.1007/s40265-013-0168-2

Published

2020-12-20

Issue

Section

Review