Assessing the performance of Alphitobius piceus (Oliver, 1792) as novel feeder insect species for small sized postmetamorphic frogs

Authors

  • Octavian CRAIOVEANU Babeș-Bolyai University Vivarium, Clinicilor 5-7, 400006, Cluj-Napoca, Romania; University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania.
  • Cristina CRAIOVEANU Babeș-Bolyai University, Faculty of Biology and Geology, Department of Taxonomy and Ecology, Clinicilor 5-7, 400006, Cluj-Napoca, Romania. *Corresponding author: christii_99@yahoo.com https://orcid.org/0000-0002-3683-2015
  • Mihai-Iacob BENȚEA University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania.
  • Cristian-Ovidiu COROIAN University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania. https://orcid.org/0000-0002-4129-969X
  • Vioara MIREȘAN University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania.

DOI:

https://doi.org/10.24193/subbbiol.2021.2.01

Keywords:

Frog farming, live prey, feeding response, juvenile frogs.

Abstract

One of the major difficulties of frog farming is providing adequate food in the first few weeks after the metamorphosis. This is a critical time frame, with rapid growth and high mortality. The established feeder insect species used throughout this delicate stage (cricket and mealworm larvae, adult fruit flies) are suitable from a trophic perspective, but present challenges and difficulties that influence the production costs. The aim of this study is to assess the performance of an alternative feeder species – Alphitobius piceus – with a simpler production technology and
a lower production cost. Two species of feeder insect were used: the conventionally used Acheta domestica larvae as control species, and Alphitobius piceus larvae as experimental species. As model anuran we used the European common frog, Rana temporaria. The experimental insect species was easily accepted and produced a strong feeding response in the post-metamophic frogs. There were no significant differences between the control and experimental groups in terms of body condition index and mortality, however survival was better in the experimental group. This similarity indicates a high potential of Alphitobius piceus as feeder species for the newly metamorphosed frogs and also a good economic opportunity for frog farms.

Craioveanu et al (PDF)

Article history: Received 2 June 2021; Revised 21 October 2021; Accepted 29 October 2021; Available online 30 December 2021.

References

Antwis, R., & Browne, R. K. (2008). Measuring anuran snout-urostyle length (SUL) and digit length from digital images. Amphibianark.org

Băncilă, R. I., Hartel, T., Plăiașu, R., Smets, J., & Cogălniceanu, D. (2010). Comparing three body condition indices in amphibians: a case study of yellow-bellied toad Bombina variegata. Amphibia-Reptilia, 31, 558-562. https://doi.org/10.1163/017353710X518405.

Beauquin, C. & Gaillard, F. (1998). Responses of class R3 retinal ganglion cells of the frog to moving configurational bars: effect of the stimulus velocity. Comp. Biochem. Physiol, 119, 387-393. https://doi.org/10.1016/s1095-6433(97)00440-6.

Braga, L.G.T., Lima, S.L., Donzele, J.L., Castro, J.C. (1998). Nutritive value of some feeds for bull-frog (Ran a catesbeia na Shaw, 1802) in growing phase. Rev. Bras. Zootec. 27: 203-209.

Breckenridge, W. J., & Tester, J. R. (1961). Growth, local movements and hibernation of the Manitoba toad, Bufo hemiophrys. Ecology, 2, 637-646. https://doi.org/10.2307/1933495.

Castro, J.C., da Silva, D.A.V., Santos, R.B., Modenesi, V.F., de Almeida, E.F. (2001). Nutritive valuesof some frog feeds. Rev. Bras. Zootec. 30: 605-610.

Clifford, C. W., Roe, R. M., & Woodring, J. P. (1976). Rearing Methods for Obtaining House Crickets, Acheta domesticus, of Known Age, Sex, and Instar. Ann. Entomol. Soc. Am, Vol. 70, no. 1.

Craioveanu, O., Craioveanu, C., Cosma, I., Ghira, I. V., & Mireșan, V. (2017). Shelter use assessment and shelter enrichment in captive bred common toads (Bufo bufo, Linnaeus 1758). North-West. J. Zool, 13 (2), 341-346. Article No.: e171501.

Culley, D. D., Horseman, N. D., Ambroski, R. L., & Meyers, S. P. (2009). Current status of amphibian culture with emphasis on nutrition, diseases and reproduction of the bullfrog, Rana catesbeiana. Proceedings of the Annual Meeting - World Mariculture Society, 9(1-4), 653–669. https://doi.org/10.1111/j.1749-7345.1978.tb00281.x.

Ewert, J. P. (1980). Neuroethology-An Introduction to the Neurophysiological Fundamentals of Behavior. Springer-Verlag, Berlin, Heidelberg, New York.

Ewert, J. P., Cooper, J. E., Langton, T., Matz, G., Reilly, K., & Schwantje, H. (2004). Background information On the species-specific proposals for amphibians Presented by the Expert Group on Amphibians and Reptiles In Working party for the preparation of the fourth multilateral consultation of parties to the European convention for the protection of vertebrate animals used for experimental and other scientific (ETS 123) 8th Meeting of the Working Party Strasbourg, 22-24 September 2004.

Fraenkel, G. (1950). The Nutrition of the Mealworm, Tenebrio molitor L. (Tenebrionidae, Coleoptera). Physiol. Zool, 23(2), 92–108. https://doi.org/10.1086/physzool.23.2.30152067.

Glennemeier, K. A. & Denver, R. J. (2002). Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J. Exp. Zool, 292, 32–40. https://doi.org/10.1002/jez.1140.

Gosner, K. (1960). A Simplified Table for Staging Anuran Embryos and Larvae with Notes on Identification. Herpetologica, 16 (3), 183-190. https://www.jstor.org/stable/3890061.

Hanboonsong, Y., Jamjanya, T., Durst, P. B. (2013). Six-legged livestock: edible insect farming, collecting and marketing in Thailand Food and Agriculture, Organization of the United Nations Regional Office Asia and the Pacific, Bangkok.

Jaeger, R. G., & Barnard, D. E. (1981). Foraging tactics of a terrestrial salamander: choice of diet instructurally simple environments. Am. Nat, 117, 639-664. https://doi.org/10.1086/283750.

Klasing, K. C., Thacker, P., Lopez, M. A., & Calvert, C. C. (2000). Increasing the calcium content of mealworms (tenebrio molitor) to improve their nutritional value for bone mineralization of growing chicks. J. Zoo Wildlife Med, 31(4), 512-517. https://doi.org/10.1638/1042-7260(2000)031[0512:ITCCOM]2.0.CO;2

Kuzmin, S. L. (1990). Trophic niche overlap in syntopic postmetamorphic amphibians of the Carpathian Mountains (Ukraine: Soviet Union). Herpetozoa, 3, 13- 24.

Labanick, G. M., & Schlueter, R. A. (1976). Growth rates of recently transformed Bufo woodhousei fowleri. Copeia, 824-826. https://doi.org/10.2307/1443477.

Lengyel, P. (2016). Măcelarirea broaștelor în Maramures. online blog, https://peterlengyel.wordpress.com/2016/03/13/macelarirea-broastelor-in-maramures/

Lima, S.L., Agostinho, C.A., Pacheco, A. (1986). Frog farming installations 1. The evolution ofmodular prototypes for intensive breeding of Leptodactylus ocellatus L. (Amphibia, Anura,Leptodactylidae). Rev. Soc. Bras. Zootec. 15: 247-262.

Miles, J., Williams, J., & Haily, A. (2004). Frog farming: investigation of biological and mechanical agents to increase the consumption of pelleted food by adult. Rana temporaria. Appl. Herpetol, 1, 271–286. https://doi.org/10.1163/157075403323012223.

Morales-Ramos, J. A., Rojas, M. G., Kay, S., Shapiro-Ilan, D. I., & Tedders, W. L. (2012). Impact of Adult Weight, Density, and Age on Reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci, 47(3), 208-220. https://doi.org/10.18474/0749-8004-47.3.208.

Nakagaki, B. J., & Defoliart, G. R. (1991). Comparison of Diets for Mass-Rearing Acheta domesticus (Orthoptera: Gryllidae) as a Novelty Food, and Comparison of Food Conversion Efficiency with Values Reported for Livestock. J. Econ. Entomol, 84(3), 891–896. https://doi.org/10.1093/jee/84.3.891.

Pechmann, J. H. K., Scott, D. E., Semlitsch, R. D., Caldwell, J. P., Vitt, L .J., & Gibbons J. W. (1991). Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science, 253, 892-895. https://doi.org/10.1126/science.253.5022.892.

Petranka, J. W., & Kennedy, C. A. (1999). Pond tadpoles with generalized morphology: is it time to reconsider their functional roles in aquatic communities? Oecologia, 120, 621-631. https://doi.org/10.1007/s004420050898.

Rodriguez-Serna, M., Flores-Nava, A., Olvera-Novoa, M.A., Carmona-Osalde, C. (1996). Growthand production of bullfrog Rana catesbeiana Shaw, 1802, at three stocking densities in a vertical intensive culture system. Aquacult. Eng. 15: 233-242.

Roznik, E. A., & Johnson, S. A. (2009). Burrow Use and Survival of Newly Metamorphosed Gopher Frogs (Rana capito). J. Herpetol, 43(3), 431-437. https://doi.org/10.1670/08-159R.1

Rot-Nikcevic, I., Denver, R. J., & Wassersug, R. J. (2005). The influence of visual and tactile stimulation on growth and metamorphosis in anuran larvae. Functional Ecology, 19, 1008–1016. https://doi.org/10.1111/j.1365-2435.2005.01051.x.

Scott, D. E., Casey, E. D., Donovan, M. F., & Tracy K. L. (2007). Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival. Oecologia, 153, 521–532. doi:10.1007/s00442-007-0755-6

Tiberti, R., Canendoli, C., & Rolla, M. (2015). The diet of Rana temporaria Linnaeus, 1758 in relation to prey availability near its altitudinal limit. Hyla: Herpetological buletin, 2, 2015. https://hrcak.srce.hr/157787.

Viosca, P. Jr. (1931). Principles of Bullfrog (Rana Catesbiana) Culture. T. Am. Fish. Soc, 61:1, 262-269. https://doi.org/10.1577/1548-8659(1931)61[262:POBRCC]2.0.CO;2

Published

2021-12-30

Issue

Section

Research article