Characterization of Celosia argentea Linn. germplasm using ISSR markers

Characterization of Celosia argentea linn. Germplasm

Authors

  • Odunayo Joseph Olawuyi Genetics and Molecular Biology Unit, Department of Botany, P.M.B 128, University of Ibadan, Ibadan, Nigeria. ✉Corresponding author, E-mail: olawuyiodunayo@yahoo.com https://orcid.org/0000-0002-0331-633X
  • Haneefah Lola Misbahudeen Genetics and Molecular Biology Unit, Department of Botany, P.M.B 128 University of Ibadan, Ibadan, Nigeria
  • Oluwagbade Joseph Odimayo Department of Virology, University Teaching Hospital (UCH), University of Ibadan, Ibadan, Nigeria https://orcid.org/0000-0001-5539-0702
  • Adedayo Omotayo Faneye Genetics and Molecular Biology Unit, Department of Botany, P.M.B 128 University of Ibadan, Ibadan, Nigeria https://orcid.org/0000-0001-6163-286X
  • Olumayowa Mary Olowe Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, South Africa. https://orcid.org/0000-0003-4310-817X
  • Akinlolu Olalekan Akanmu Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, South Africa https://orcid.org/0000-0003-2816-9820

DOI:

https://doi.org/10.24193/subbbiol.2024.1.06

Keywords:

ISSR primers, Celosia argentea, germplasm, genomic DNA

Abstract

Celosia argentea is an annual leafy vegetable popularly known for its dietary and medicinal values. Hence, it is important to preserve and further improve this vegetable to enhance its numerous benefits. This study therefore investigated the genetic variability among different genotypes of C. argentea using ISSR primers. A total of 15 C. argentea genotypes were sourced from National Centre for Genetic Resources and Biotechnology (NACGRAB) in Ibadan, Nigeria and 10 genotypes sourced from different markets. The open field experiment was set up in a completely randomized design. Seeds of each cultivar were grown and seedlings transplanted. Fresh young apical leaves were harvested. DNA was extracted from young frozen apical leaves. Six ISSR primers were optimized and used in PCR with a touch-down procedure in a thermocycler. Agarose gel electrophoresis was performed, and bands were visualized. Molecular data was analyzed for total gene diversity, while morphological data was analyzed using ANOVA. The genotypes of NGB recorded the highest mean performance for plant height, leaf biomass and seed weight, while the A00 genotypes were observed to have higher values of leaf length, leaf area and root biomass. The principal component analysis showed that the first component accounted for 42% of the total variation. The correlation matrix for growth, agronomic and yield characters show highly significant positive relationship among the growth characters at P<0.05. Primer UBC-866(CTC)6 was highly polymorphic. Genotype A005 performed best for growth characters while NGB00182 performed best for yield characters. Genetic assessment and improvements in C. argenta germplasm play key role in future studies and improvements of vegetable crop.

References

Agbolade, J.O., Olawuyi, O.J., Bello, O.B., Oluseye, O.D., & Komolafe, R.J. (2016). Genetic diversity and correlated response to selection of grain and associated characters in maize (Zea mays L.), Intl. Res. J. Appl. Basic. Sci., 13(1), 56-61.

Aremu, C.O., Adebayo, M.A., Ariyo, O.J., & Adewale, B.B. (2007). Classification of genetic diversity and choice of parents for hybridization in cowpea Vigna unguiculata (L.) Walp for humid savanna ecology. Afr. J. Biotechnol., 6(20), 2333-2339. Doi: 10.4314/ajb.v6i20.58040.

Badra, T. (1993). Lagos spinach (Celosia sp.). In Williams, J.T. (ed.) Underutilized crops: Pulses and vegetables. Chapman and Hall, London. 131-163.

Balbaa, M.G., Osman, H.T., Kandil, E.E., Javed, T., Lamlom, S.F., Ali, H.M., Kalaji, H.M., Wróbel, J., Telesiñski, A., Brysiewicz, A., & Ghareeb, R.Y. (2022). Determination of morpho-physiological and yield traits of maize inbred lines (Zea mays L.) under optimal and drought stress conditions. Front. Plant Sci., 13, p.959203.

Bamigbegbin, B.J., Olawuyi, O.J., & Jonathan, S.G. (2016). Molecular variability of Celosia argentea using amplified fragment length polymorphism (AFLP) marker. Mol. Plant Breed., 7(26), 1-6. Doi: 10.5376/mpb.2016.07.0026.

Basel, S. (2011). Efficiency of RAPD and ISSR markers in assessing genetic variation in Arthrocnemum macrostachyum (Chenopodiaceae). Braz. Arch. Biol. Technol., 54(5), 859-866. Doi: 10.1590/S1516-89132011000500002.

Begna, T., & Begna, T. (2021). Role and economic importance of crop genetic diversity in food security. Int. J. Agric. Sci. Food Technol., 7(1), 164-169.

Brenan, J.P. (1981). The genus Amaranthus in Southern Africa. J. S. Afr. Bot., 47(3), 451-492.

Chioma, L.K., Olatunde, O., Innocent, O.I., & Adefolarin, O.M. (2017). A review of the multifaceted usefulness of Celosia argentea Linn. Eur. J. Pharm. Med. Res., 4(10), 72-79.

Christopoulos, M.V., Rouskas, D., Tsantili, E., & Bebeli, P.J. (2010). Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by inter-simple sequence repeat (ISSR) markers. Sci. Hortic., 125(4), 584-592. Doi: 10.1016/j.scientia.2010.05.006.

Conțescu, E.L., & Anton, F.G. (2023). Study of the genetic diversity of some wild sunflower species using ISSR markers. Rom. Agric. Res., 40, 2023-2116.

Denton, O.A. (2004). Celosia argentea L. Plant Resour. Trop. Africa, 2, 167-171.

Englbrecht, C.C., Freyhof, J., Nolte, A., Rassmann, K., Schliewen, U., & Tautz, D. (2000). Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei: Cottidae) suggests a pre-Pleistocene origin of the major central European populations. Mol. Ecol., 9(6), 709–722. Doi: 10.1046/j.1365-294x.2000.00912.x.

Ejoh, S.I., Wireko-Manu, F.D., Page, D., & Renard, C.M. (2021). Traditional green leafy vegetables as underutilised sources of micronutrients in a rural farming community in south-west Nigeria I: estimation of vitamin C, carotenoids and mineral contents. S. Afr. J. Clin. Nutr., 34(2), 40-45.

Falodun, E.J., Akpomuaire, E., & Abidakun, O.P. (2022). The effects of organic manures and harvesting types in two seasons for yield and yield contributing agronomic traits in Celosia (Celosia argentea L.). Agric. Conspec. Sci., 87(1), 17-23.

Food and Agriculture Organization statistical database (2004): FAOSTAT website, http//faostat.fao.

Ganapathy, K.N., Gnanesh, B., Gowda, N., Byre, M., Venkatesha, S.C., Gomashe, S. S., & Mallikarjuna, V.C. (2011). AFLP analysis in pigeon pea (Cajanus cajan(L.) Millsp.) revealed close relationship of cultivated genotypes with some of its wild relatives. Genet. Resour. Crop Evol., 58, 837-847.

Gehan, G., Asmaa, M.A., & Hoda, E.E. (2014). Induction of mutations in Celosia argentea using dimethyl sulphate and identification of genetic variation by inter simple sequence repeats (ISSRs) markers. Int, J. Plt. Breed. Genet., 8(2), 44-56. Doi: 10.3923/ijpbg.2014.44.56.

Hussain, U., Afza, R., Gul, I., Sajad, M.A., Shah, G.M., Muhammad, Z., & Khan, S.M. (2024). Phytoremediation of heavy metals spiked soil by Celosia argentea L.: effect on plant growth and metal stabilization. Environ. Sci. Pollut. Res., 1-9.

IPGRI. (2006). Descriptors for mango (Mangifera indica L.). International Plant Genetic Resources Institute, Rome, Italy.

Jabbarzadeh, Z., Khosh-Khui, M., Salehi, H., & Saberivand, A. (2010). Inter simple sequence repeat (ISSR) markers as reproducible and specific tools for genetic diversity analysis of rose species. Afr. J. Biotechnol., 9(37), 6091-6095.

Liu, K., & Muse, S.V. (2005). PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128-2129. Doi: 10.1093/bioinformatics/bti282.

Mariana, P.T., Martín, G., Ruth, H., & Alejandro, E. 2012. Analysis of genetic variability by ISSR markers in Calibrachoa caesia. Electron. J. Biotechnol., 15(5), 8. Doi: 10.2225/vol15-issue5-fulltext-8.

Nahida, Ansari, S.H., & Siddiqui, A.N. (2012). Pistacia Lentiscus: A review on phytochemistry and pharmacological properties. Int. J. Pharm. Pharm. Sci., 4, 16-20.

Nidavani, R.B., Mahalakshmi,A.M., & Mallappa, S. (2013). Towards a better understanding of an updated ethnopharmacology of Celosia argentea L. Int J Pharm Pharm Sci., 5(3), 54-59.

Nwangburuka, C.C., Olawuyi, O.J., Kehinde, O., Kayode, O.O., Denton, O.A., Daramola, S.D.& Awotade, D. (2012). Effect of Arburscular mycorrhizea (AM), poultry manure (PM), NPK fertilizer and the combination of AM-PM on the growth and yield of okra (Abelmoschus esculentus) Nat. Sci., 10(9), 35-41.

Oduwaye, O.A., Baranek, M., Cechova, J., & Raddova, J. (2014). Reliability and comparism of the polymorphism revealed in amaranth by amplified fragment length polymorphism (AFLPs) and inter simple sequence repeats (ISSRs). J. Plant Breed. Crop Sci., 6(4), 48-56. Doi: 10.5897/JPBSC2013.0413.

Olakojo, S.A., Kogbe, J.O.S., Iken, J.E., & Daramola, A.M. (2005). Yield and disease evaluation of some improved maize (Zea mays L) varieties in Southwestern Nigeria. Trop. Subtrop. Agroeco., 5, 51-55.

Olawuyi, O.J., & Fawole, I. (2005). Studies on genetic variability of some quantitative and qualitative characters in pigeon pea - Cajanus cajan (L.) Millsp. (Fabaceae). Acta Satech., 2(1), 30-36.

Olawuyi, O.J., Bamigbegbin, B.J., & Bello, O.B. (2016). Genetic variation of morphological and yield characters of Celosia argentea L. Germplasm. J. Basic Appl. Res. Int., 13(3), 160-169.

Olawuyi, O.J., Odebode, A.C., Babalola, B.J., Afolayan, E.T., & Onu, C.P. (2014). Potentials of arbuscular mycorrhiza fungus in tolerating drought of miaze (Zea mays L.). Am. J. Plant Sci., 5(5), 779-786. Doi: 10.4236/ajps.2014.56092.

Olowe, O.A., Suman C., Peter, S., Lothar, H.W., Olufunmilola, B.M., Albert, B.O., & Muna, A. (2013). Pathotyping blaCTX-M Escherichia coli from Nigeria. European J. Microbiol. Immunol., 3(2), 120–125. Doi: 10.1556/EuJMI.3.2013.2.5.

Omondi, E.O., Thomas, D., Marcus, L., Mary, A.O., Fekadu, F.D., & Traud W. (2016). Molecular markers for genetic diversity studies in African leafy vegetables. Adv. Biosci. Biotechnol., 7(3), 188-197. Doi: 10.4236/abb.2016.73017.

Rakoczy-Trojanowska, M., & Bolibok, H. (2004). Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cell. Mol. Biol. Lett., 9(2), 221-238.

Rathanaswamy, R., Veeraswamy, R., Raghupathy, A., & Palaniswamy, G.A. (1973). Studies on genetic variability of certain quantitative characters in red gram. Madras Agric. J., 63(3), 204-206.

Stuart, Jr. G.U. (2016). Philippine medicinal plants. Family Amaranthaceae Palong-manok. Retrieved on 03/08/2018 from http://www.stuartxchange.org/Palong-manok.html 13.

Taran, B., Zhang, C., Warkentin, T., Tullu, A., & Vandenberg, A. (2005). Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome. 48(2), 257-72. Doi: 10.1139/g04-114

Thorat, B.R. (2018). Review on Celosia argentea L. Plant. Res. J. Pharmacogn. Phytochem., 10(1), 109-119.

Tindall, H.D. (1983). Vegetables in the tropics. Macmillian Press Ltd, London. 533.

Wee, Y.C, (1992). A guide to medicinal plants, Singapore Science Centre Publication, Singapore.

Whitehead, A., Anderson, S.L., Kuivila, K.M., Roach, J.L., & May, B. (2003). Genetic variation among interconnected populations of Catostomus occidentalis: implications for distinguishing impacts of contaminants from biogeographical structuring. Mol. Ecol. 12(10), 2817–2833. Doi: 10.1046/j.1365-294x.2003.01933.x

Zhao Z., Zhang H., Wang P., Yang Y., Sun H., Li J., Chen X., Li J., Ji N., Feng H., & Zhao S. (2023). Development of SSR molecular markers and genetic diversity analysis of Clematis acerifolia from Taihang Mountains. PLoS One, 18(5), e0285754. Doi: 10.1371/journal.pone.0285754. PMID: 37205665; PMCID: PMC10198494.

Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeats (SSR)- anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183. Doi: 10.1006/geno.1994.1151

Sneath, P.H.A., & Sokal, R.R. (1973). Numerical taxonomy, The principle and practice of numerical classification. W. H. Freeman, San Francisco. 573.

Downloads

Published

2024-06-27