Potential innovations from the application of beneficial soil microbes to promote sustainable crop production

Beneficial Microorganisms in Sustainable Agriculture

Authors

  • Chinenyenwa Fortune Chukwuneme Cell Biology and Regeneration Unit, Department of Natural Sciences, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa https://orcid.org/0000-0002-3995-208X
  • Ayansina Segun Ayangbenro Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag, X2046, Mmabatho 2735, South Africa https://orcid.org/0000-0002-3220-1873
  • Vittori Venturi International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; African Genome Center, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco https://orcid.org/0000-0003-4307-5697
  • Bernard R. Glick Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada https://orcid.org/0000-0002-2810-8406
  • Olubukola Oluranti Babalola Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag, X2046, Mmabatho 2735, South Africa. ✉Corresponding author, E-mail: Olubukola.babalola@nwu.ac.za https://orcid.org/0000-0002-2810-8406

DOI:

https://doi.org/10.24193/subbbiol.2024.1.03

Keywords:

Biofertilizers, secondary metabolites, nanoencapsulation, quorum-sensing, volatile organic compounds, sustainable agriculture

Abstract

Crop productivity may be significantly inhibited by factors, such as increased temperature, soil erosion, pathogen and pest attacks, and drought and salt stresses, mostly resulting from global climate change. However, microorganisms that are found in the rhizosphere can aid in the mobilization of essential soil nutrients, facilitate plant growth, and reduce abiotic and biotic stresses of plants. Soil microbes accomplish these beneficial functions via several mechanisms. Here, an elaborate description of the molecular mechanisms of plant growth-promotion by soil microbes and the potential of these organisms to be used as biofertilizers and biopesticides to improve plant health is provided. In addition, the possible revolution that could be realized by the synergism of these beneficial microbes with nanotechnology is discussed. While the use of biofertilizers to enhance plant growth has been demonstrated to be a beneficial phenomenon, this approach has often failed to yield the desired result in field applications. However, identifying microbial species with beneficial attributes and combining them with nanotechnology tools like nanoencapsulation and biosensors could lead to the formulation of important agriproducts (nanobiopesticides and nanobiofertilizers) that will ensure sustained delivery of the agriproducts and facilitate early detection and proper management of plant pests and diseases. It is anticipated that precision farming will improve agricultural sustainability by increasing crop production for the steadily increasing world population.

References

Abbas, T., Zahir, Z.A., Naveed, M., & Kremer, R.J. (2018). Limitations of existing weed control practices necessitate development of alternative techniques based on biological approaches. Adv. Agron, 147, 239-280.

Abbey, L., Abbey, J., Leke‐Aladekoba, A., Iheshiulo, E.M.A., & Ijenyo, M. (2019). Biopesticides and biofertilizers: types, production, benefits, and utilization, In: Byproducts from agriculture and fisheries: adding value for food, feed, pharma, and fuels, Simpson, B. K., Aryee, A.N.A., Toldrá, F. (eds.), John Wiley & Sons, pp. 479-500.

Abd-Elsalam, K.A., Al-Dhabaan, F.A., Alghuthaymi, M., Njobeh, P.B., & Almoammar, H. (2019). Nanobiofungicides: Present concept and future perspectives in fungal control. In: Nano-biopesticides today and future perspectives, Koul, O. (ed), Academic Press, pp. 315-351.

Acharya, A., & Pal, P.K. (2020). Agriculture nanotechnology: translating research outcome to field applications by influencing environmental sustainability. NanoImpact, 19, 100232.

Afridi, M.S., Mahmood, T., Salam, A., Mukhtar, T., Mehmood, S., Ali, J., Khatoon, Z., Bibi, M., Javed, M.T., & Sultan, T. (2019). Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol. Biochem, 139, 569-577.

Afzal, I., Shinwari, Z.K., & Iqrar, I. (2015). Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. Pak. J. Bot, 47(5), 1999-2008.

Aguilar-Marcelino, L., Al-Ani, L.K.T., de Freitas Soares, F.E., Moreira, A.L.E., Téllez-Téllez, M., Castañeda-Ramírez, G.S., de Lourdes Acosta-Urdapilleta, M., Díaz-Godínez, G., & Pineda-Alegría, J.A. (2021). Formation, resistance, and pathogenicity of fungal biofilms: Current trends and future challenges. In: Recent trends in mycological research, Yadav, A.N. (ed.) Springer, Cham, pp. 411-438.

Ahmad, S., Imran, M., Hussain, S., Mahmood, S., Hussain, A., & Hasnain, M. (2017). Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. J. Sci. Food Agric, 97(11), 3685-3690.

Ahmed, S., Rahman, S., Hasan, M., Paul, N., & Sajib, A.A. (2018). Microbial degradation of lignocellulosic biomass: discovery of novel natural lignocellulolytic bacteria. BioTechnologia, 99(2), 137-146.

Ajilogba, C.F., Babalola, O.O., & Ahmad, F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Stud. Ethno-Med, 7(3), 205-216.

Alghuthaymi, M.A., Almoammar, H., Rai, M., Said-Galiev, E., Abd-Elsalam, K.A. (2015). Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip, 29(2), 221-236.

Ali, A., Hameed, S., Imran, A., Iqbal, M., Iqbal, J., & Oresnik, I.J. (2016). Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production. FEMS Microbiol. Ecol, 92(9), fiw115.

Alori, E.T., & Babalola, O.O. (2018). Microbial inoculants for improve crop quality and human health. Front. Microbiol, 9, 2213.

An, J.H., Goo, E., Kim, H., Seo, Y.-S., & Hwang, I. (2014). Bacterial quorum sensing and metabolic slowing in a cooperative population. Proc. Natl. Acad. Sci, 111(41), 14912-14917.

Andersson, D.I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol, 12(7), 465-478.

Anjum, M., & Pradhan, S.N. (2018). Application of nanotechnology in precision farming: A review. Int. J. Chem. Stud, 6(5), 755-760.

Antar, M., Gopal, P., Msimbira, L.A., Naamala, J., Nazari, M., Overbeek, W., Backer, R., & Smith, D.L. (2021). Inter-organismal signaling in the rhizosphere. In: Rhizosphere biology: interactions between microbes and plants, Gupta, V. V. S. R., Sharma, A. K. (eds.), Springer, Singapore, pp. 255-293.

Arora, K. (2018). Advances in nano based biosensors for food and agriculture. In: Nanotechnology, food security and water treatment, Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E. (eds), Springer, Cham, pp. 1-52.

Aznar, A., & Dellagi, A. 2015. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J. Exp. Bot, 66(11), 3001-3010.

Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol. Lett, 32(11), 1559-1570.

Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., & Smith, D.L. (2018). Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci, 9, 1473.

Bai, X., Zhao, S., & Duo, L. (2017). Impacts of carbon nanomaterials on the diversity of microarthropods in turfgrass soil. Sci. Rep, 7(1), 1-6.

Bakka, K., & Challabathula, D. (2020). Amelioration of salt stress tolerance in plants by plant growth-promoting rhizobacteria: insights from “omics” approaches. In: Plant microbe symbiosis, Varma, A., Tripathi, S., Prasad, R. (eds), Springer, Cham, pp. 303-330.

Baweja, P., Kumar, S., & Kumar, G. (2020). Fertilizers and pesticides: their impact on soil health and environment. in: Soil Health, Giri, B., Varma, A. (eds), Springer, Cham, pp. 265-285.

Berendsen, R.L., Pieterse, C.M., & Bakker, P.A. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci, 17(8), 478-486.

Bhatt, K., Maheshwari, D.K. (2020). Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech, 10(2), 36.

Bhattacharyya, A., Duraisamy, P., Govindarajan, M., Buhroo, A.A., & Prasad, R. (2016). Nano-biofungicides: emerging trend in insect pest control. In: Advances and Applications through Fungal Nanobiotechnology, Prasad, R. (ed), Springer, Cham, pp. 307-319.

Biswas, S., & Anusuya, D. (2014). Effect of bioinoculants and organic manure (phosphocompost) on growth, yield and nutrient uptake of Trigonella foenum-graecum L. (Fenugreek). Int. J. Sci. Res, 3, 38-41.

Bukhat, S., Imran, A., Javaid, S., Shahid, M., Majeed, A., & Naqqash, T. (2020). Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol. Res, 238, 126486.

Caddell, D.F., Deng, S., & Coleman-Derr, D. (2019). Role of the plant root microbiome in abiotic stress tolerance. In: Seed Endophytes, Verma, S., White, Jr, J. (eds), Springer, Cham, pp. 273-311.

Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/ amyloliquefaciens. Microb. Biotechnol, 8(2), 281-295.

Chagas, F.O., de Cassia Pessotti, R., Caraballo-Rodriguez, A.M., & Pupo, M.T. (2018). Chemical signaling involved in plant–microbe interactions. Chem. Soc. Rev, 47(5), 1652-1704.

Charudattan, R. (2010). A reflection on my research in weed biological control: using what we have learned for future applications. Weed Technol, 24(2), 208-217.

Charudattan, R., & Hiebert, E. (2007). A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks Pest Manag, 18(4), 167.

Cheng, Z., Park, E., & Glick, B.R. (2007). 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can. J. Microbiol, 53(7), 912-918.

Chhipa, H., & Kaushik, N. (2015). Development of nano-bio-pesticide using Iron and Eucalyptus plant extract and their application in pest management. Conference Proceeding of Symposium on Recent Advances in Biotechnology for Food and Fuel, TERI, New Delhi. pp. 19-20.

Chowdhury, S.P., Uhl, J., Grosch, R., Alquéres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., & Hartmann, A. (2015). Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol. Plant-Microbe Interact, 28(9), 984-995.

Chu, W., Jiang, Y., Yongwang, L., & Zhu, W. (2011). Role of the quorum-sensing system in biofilm formation and virulence of Aeromonas hydrophila. Afr. J. Microbiol. Res, 5(32), 5819-5825.

Chukwuneme, C.F., Babalola, O.O., Kutu, F.R., & Ojuederie, O.B. (2020). Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize. J. Plant Interact, 15(1), 93-105.

Costerousse, B., Schönholzer-Mauclaire, L., Frossard, E., & Thonar, C. (2018). Identification of heterotrophic zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Appl. Environ. Microbiol, 84(1), e01715-17.

Das, S., Yadav, A., & Debnath, N. (2019). Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. J. Stored Prod. Res, 83, 92-96.

Deshpande, M.V. (2019). Nanobiopesticide perspectives for protection and nutrition of plants. In: Nano-biopesticides today and future perspectives, Koul, O. (ed), Academic Press,

pp. 47-68.

Devi, S., & Soni, R. 2020. Relevance of microbial diversity in implicating soil restoration and health management. In: Soil health restoration and management, Meena, R. (ed), Springer, Singapore, pp. 161-202.

Djiwanti, S.R., & Kaushik, S. (2019). Nanopesticide: Future application of nanomaterials in plant protection. In: Plant nanobionics, Prasad, R. (ed), Springer, Cham, pp. 255-298.

Doolette, C.L., Gupta, V.V., Lu, Y., Payne, J.L., Batstone, D.J., Kirby, J.K., Navarro, D.A., & McLaughlin, M.J. (2016). Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PloS One, 11(8), e0161979.

Duca, D., Lorv, J., Patten, C.L., Rose, D., & Glick, B.R. (2014). Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek, 106(1), 85-125.

Duhan, J.S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: the new perspective in precision agriculture. Biotechnol. Rep, 15, 11-23.

Duke, S.O., Owens, D.K., & Dayan, F.E. (2014). The growing need for biochemical bioherbicides. In: Biopesticides: state of the art and future opportunities, Gross, A.D., Coats, J.R., Duke, S.O., Seiber, J.N. (eds), ACS Publications, pp. 31-43.

Eivazi, F., Afrasiabi, Z., & Elizabeth, J. (2018). Effects of silver nanoparticles on the activities of soil enzymes involved in carbon and nutrient cycling. Pedosphere, 28(2), 209-214.

Eleni, P., & Krokida, M.K. (2017). Other technologies for encapsulation (Air suspension coating, pan coating, and vacuum drying). In: Thermal and nonthermal encapsulation methods, Krokida, M. (ed), CRC Press, pp. 203-220.

Etesami, H. (2020). Plant–microbe interactions in plants and stress tolerance. In: Plant life under changing environment, Tripathi, D.K., Pratap Singh, V., Chauhan, D.K., Sharma, S., Prasad, S.M., Dubey, N. K., Ramawat, N. (eds), Academic Press, pp. 355-396.

Etesami, H., Jeong, B.R., & Glick, B.R. (2021). Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant: a review. Front. Plant Sci, 12, 1355.

Fadiji, A.E., Mortimer, P.E., Xu, J., Ebenso, E.E., & Babalola, O.O. (2022a). Biosynthesis of nanoparticles using endophytes: a novel approach for enhancing plant growth and sustainable agriculture. Sustainability, 14(17), 10839.

Fadiji, A.E., Mthiyane, D.M.N., Onwudiwe, D.C., & Babalola, O.O. (2022b). Harnessing the known and unknown impact of nanotechnology on enhancing food security and reducing postharvest losses: constraints and future prospects. Agronomy, 12(7), 1657.

Fernandez Acero, F.J., Carbú, M., El-Akhal, M.R., Garrido, C., González-Rodríguez, V.E., & Cantoral, J.M. (2011). Development of proteomics-based fungicides: new strategies for environmentally friendly control of fungal plant diseases. Int. J. Mol. Sci, 12(1), 795-816.

Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., & Gurr, S.J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186-194.

Forni, C., Duca, D., & Glick, B.R. (2017). Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil, 410(1-2), 335-356.

Frankenberger Jr, W.T., & Arshad, M. (2020). Phytohormones in soils microbial production & function. CRC Press.

Fukami, J., Ollero, F.J., de la Osa, C., Valderrama-Fernández, R., Nogueira, M.A., Megías, M., & Hungria, M. (2018). Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Arch. Microbiol, 200(8), 1191-1203.

Gao, C., El-Sawah, A.M., Ali, D.F.I., Alhaj Hamoud, Y., Shaghaleh, H., & Sheteiwy, M.S. (2020). The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy, 10(3), 319.

Gardea-Torresdey, J.L., Rico, C.M., & White, J.C. (2014). Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ. Sci. Technol, 48(5), 2526-2540.

Ge, Y., Schimel, J.P., & Holden, P.A. (2012). Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl. Environ. Microbiol, 78(18), 6749-6758.

Geetha, A. (2019). Phytotoxicity due to fungicides and herbicides and its impact in crop physiological factors. In: Advances in agricultural sciences, Naresh, A.K. (ed.), AkiNik Publications. New Delhi, India, pp. 29.

Gepstein, S., & Glick, B.R. (2013). Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol. Biol, 82(6), 623-633.

Glick, B.R. (2020). Environmental interactions. in: Beneficial plant-bacterial interactions. 2nd Ed. Springer, Cham, pp. 257-299.

Glick, B.R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research, Bakker, P.A.H.M., Raaijmakers, J.M., Bloemberg, G., Höfte, M., Lemanceau, P., Cooke, B.M. (eds), Springer, Dordrecht, pp. 329-339.

Glick, B.R., & Gamalero, E. (2021). Recent developments in the study of plant microbiomes. Microorganisms, 9(7), 1533.

Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.-S., & Patra, J.K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res, 206, 131-140.

Gray, E., & Smith, D. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol. Biochem, 37(3), 395-412.

Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol, 7(2), 096-102.

Hartmann, A., Rothballer, M., Hense, B.A., & Schröder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front. Plant Sci, 5, 131.

Hassan, R., Shaaban, M.I., Abdel Bar, F.M., El-Mahdy, A.M., & Shokralla, S. (2016). Quorum sensing inhibiting activity of Streptomyces coelicoflavus isolated from soil. Front. Microbiol, 7, 659.

Hegde, K., Brar, S.K., Verma, M., & Surampalli, R.Y. (2016). Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol. Environ. Eng, 1(1), 1-12.

Helman, Y., & Chernin, L. (2015). Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol. Plant Pathol, 16(3), 316-329.

Hershenhorn, J., Casella, F., & Vurro, M. (2016). Weed biocontrol with fungi: past, present and future. Biocontrol. Sci. Technol, 26(10), 1313-1328.

Hong, K.-W., Koh, C.-L., Sam, C.-K., Yin, W.-F., & Chan, K.-G. (2012). Quorum quenching revisited—from signal decays to signalling confusion. Sensors, 12(4), 4661-4696.

Igiehon, N.O., & Babalola, O.O. (2018a). Below-ground-above-ground plant-microbial interactions: focusing on soybean, rhizobacteria and mycorrhizal fungi. The Open Microbiology Journal, 12, 261.

Igiehon, N.O., & Babalola, O.O. (2018b). Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int. J. Environ. Res. Public Health, 15(4), 574.

Imran, A., Saadalla, M.J.A., Khan, S.-U., Mirza, M.S., Malik, K.A., & Hafeez, F.Y. (2014). Ochrobactrum sp. Pv2Z2 exhibits multiple traits of plant growth promotion, biodegradation and N-acyl-homoserine-lactone quorum sensing. Ann. Microbiol, 64(4), 1797-1806.

Ingle, A.P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl. Microbiol. Biotechnol, 98(3), 1001-1009.

Jaemsaeng, R., Jantasuriyarat, C., & Thamchaipenet, A. (2018). Positive role of 1-aminocyclopropane-1-carboxylate deaminase-producing endophytic Streptomyces sp. GMKU 336 on flooding resistance of mung bean. Agric. Nat. Resour, 52(4), 330-334.

Kamal, R.K., Athisayam, V., Gusain, Y.S., & Kumar, V. (2018). Trichoderma: a most common biofertilizer with multiple roles in agriculture. Biomed J Sci & Tech Resl, 4(5), MS.ID.001107.

Kandaswamy, R., Ramasamy, M.K., Palanivel, R., & Balasundaram, U. (2019). Impact of Pseudomonas putida RRF3 on the root transcriptome of rice plants: insights into defense response, secondary metabolism and root exudation. J. Biosci, 44(4), 98.

Kaushal, M., & Wani, S.P. (2017). Nanosensors: frontiers in precision agriculture. In: Nanotechnology, Prasad, R., Kumar, M., Kumar, V. (eds), Springer, Singapore, pp. 279-291.

Khan, M., Bhargava, P., & Goel, R. (2019). Quorum sensing molecules of rhizobacteria: a trigger for developing systemic resistance in plants. In: Plant growth promoting rhizobacteria for sustainable stress management, Sayyed, R., Arora, N., Reddy, M. (eds), Springer, Singapore, pp. 117-138.

Khan, N., Bano, A., Ali, S., & Babar, M.A.(2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul, 90, 189-203.

Kour, D., Rana, K.L., Yadav, N., Yadav, A.N., Kumar, A., Meena, V.S., Singh, B., Chauhan, V.S., Dhaliwal, H.S., & Saxena, A.K. (2019). Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Plant growth promoting rhizobacteria for agricultural sustainability, Kumar, A., Meena, V. (ed), Springer, Singapore, pp. 19-65.

Kremer, R.J. (2019). Bioherbicides and nanotechnology: current status and future trends. In: Nano-biopesticides today and future perspectives, Koul, O. (ed), Academic Press, pp. 353-366.

Krishnaraj, C., Ramachandran, R., Mohan, K., & Kalaichelvan, P. (2012). Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc, 93, 95-99.

Kulkarni, R.A., Prabhuraj, A., Ashoka, J., Hanchinal, S., & Hiregoudar, S. (2017). Generation and evaluation of nanoparticles of supernatant of Photorhabdus luminescens (Thomas and Poinar) against mite and aphid pests of cotton for enhanced efficacy. Curr. Sci, 112, 2312-2316.

Kumar, M., Saxena, R., & Tomar, R.S. (2017). Endophytic microorganisms: promising candidate as biofertilizer. In: Microorganisms for green revolution, Panpatte, D., Jhala, Y., Vyas, R., Shelat, H. (eds), Springer, Singapore, pp. 77-85.

Li, Y., Gu, Y., Li, J., Xu, M., Wei, Q., & Wang, Y. (2015). Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front. Microbiol, 6, 883.

Llorente, B.E., Alasia, M.A., & Larraburu, E.E. (2016). Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. N Biotechnol, 33(1), 32-40.

Ma, Y., Yao, Y., Yang, J., He, X., Ding, Y., Zhang, P., Zhang, J., Wang, G., Xie, C., Luo, W. (2018). Trophic transfer and transformation of CeO2 nanoparticles along a terrestrial food chain: influence of exposure routes. Environ. Sci. Technol, 52(14), 7921-7927.

Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms. Adv. Agron, 162, 31-87.

Maheshwari, D.K., Kumar, S., Kumar, B., & Pandey, P. (2010). Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Indian J. Microbiol, 50(4), 425-431.

Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., & Thangaraj, M.P. (2017). Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J. Photochem. Photobiol. B, Biol, 174, 306-314.

Maruyama, C., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P., Fraceto, L., & de Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep, 6 19768.

Mayak, S., Tirosh, T., & Glick, B.R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem, 42(6), 565-572.

Mc-Carthy, U., Uysal, I., Badia-Melis, R., Mercier, S., O'Donnell, C., & Ktenioudaki, A. (2018). Global food security–Issues, challenges and technological solutions. Trends Food Sci. Technol, 77, 11-20.

Meybeck, A., Laval, E., Lévesque, R., & Parent, G. (2018). Food security and nutrition in the age of climate change. In: Proceedings of the International Symposium organized by the Government of Québec in collaboration with FAO, Québec City, pp. 132.

Meyer, S.L., Everts, K.L., Gardener, B.M., Masler, E.P., Abdelnabby, H.M., & Skantar, A.M. (2016). Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. J. Nematol, 48(1), 43.

Mishra, S., Singh, B.R., Naqvi, A.H., & Singh, H. (2017). Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci. Rep, 7(1), 1-15.

Mishra, S., Singh, B.R., Singh, A., Keswani, C., Naqvi, A.H., & Singh, H. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One, 9(5), e97881.

Misra, S., & Chauhan, P.S. (2020). ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech, 10(3), 1-14.

Mohanram, S., & Kumar, P. (2019). Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann. Microbiol, 69(4), 307-320.

Moharana, P., Meena, M., & Biswas, D. (2018). Role of phosphate-solubilizing microbes in the enhancement of fertilizer value of rock phosphate through composting technology. In: Role of rhizospheric microbes in soil, Meena, V. (ed), Springer, Singapore, pp. 167-202.

Mukherjee, A., Maity, A., Pramanik, P., Shubha, K., Joshi, D., & Wani, S. (2019). Public perception about use of nanotechnology in agriculture. In: Advances in phytonanotechnology, Ghorbanpour, M., Wani, S. H. (ed), Academic Press, pp. 405-418.

Mukherjee, D. (2019). Microbial interventions in soil and plant health for improving crop efficiency. In: Microbial interventions in agriculture and environment, Singh, D., Prabha, R. (ed) Springer, Singapore, pp. 17-47.

Abdul Malik, N.A., Kumar, I.S., & Nadarajah, K. (2020). Elicitor and receptor molecules: orchestrators of plant defense and immunity. Int. J. Mol. Sci., 21(3), 963.

Nadarajah, K.K. (2017). Induction of systemic resistance for disease suppression. In: Crop improvement, Abdullah, S., Chai-Ling, H., Wagstaff, C. (eds), Springer, Cham, pp. 335-357.

Namasivayam, S.K.R., Tony, B., Bharani, R.A., & Raj, F.R. (2015). Herbicidal activity of soil isolate of Fusarium oxysporum free and chitosan nanoparticles coated metabolites against economic important weed Ninidam theenjan. Asian J. Microbiol. Biotechnol. & Environ Sci, 17, 1015-1020.

Nuruzzaman, M., Rahman, M.M., Liu, Y., & Naidu, R. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J. Agric. Food Chem, 64(7), 1447-1483.

Odelade, K.A., & Babalola, O.O. (2019). Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int. J. Environ. Res. Public Health, 16(20), 3873.

Ojha, S., Singh, D., Sett, A., Chetia, H., Kabiraj, D., & Bora, U. (2018). Nanotechnology in crop protection. In: Nanomaterials in plants, algae, and microorganisms, Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K., Dubey, N.K. (eds), Academic Press, pp. 345-391.

Olanrewaju, O.S., Ayangbenro, A.S., Glick, B.R., & Babalola, O.O. (2019). Plant health: feedback effect of root exudates-rhizobiome interactions. Appl. Microbiol. Biotechnol, 103(3), 1155-1166.

Orozco-Mosqueda, M.d.C., Rocha-Granados, M.d.C., Glick, B.R., & Santoyo, G. (2018). Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res, 208, 25-31.

Orr, R., & Nelson, P.N. (2018). Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Appl. Soil Ecol, 132, 20-33.

Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signal. Behav, 4(8), 701-712.

Ortiz-Castro, R., & López-Bucio, J. (2019). Phytostimulation and root architectural responses to quorum-sensing signals and related molecules from rhizobacteria. Plant Sci, 284, 135-142.

Osman, K.T. (2018). Degraded soils. In: Management of soil problems, Springer, Cham, pp. 409-456.

Pallavi, Chandra, D., & Sharma, A. (2017). Commercial microbial products: exploiting beneficial plant-microbe interaction. In: Plant-microbe interactions in agro-ecological perspectives, Singh, D., Singh, H., Prabha, R. (eds), Springer, Singapore, pp. 607-626.

Panth, M., Hassler, S.C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), 16.

Patel, J.S., Yadav, S.K., Bajpai, R., Teli, B., & Rashid, M. (2020). PGPR secondary metabolites: an active syrup for improvement of plant health. In: Molecular aspects of plant beneficial microbes in agriculture, Sharma, V., Salwan, R., Al-Ani, L.K.T (eds), Academic Press, pp. 195-208.

Pereira, L., Dias, N., Carvalho, J., Fernandes, S., Santos, C., & Lima, N. (2014). Synthesis, characterization and antifungal activity of chemically and fungal‐produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol, 117(6), 1601-1613.

Pérez‐de‐Luque, A., & Hermosín, M.C. (2013). Nanotechnology and its use in agriculture. In: Bio‐nanotechnology: a revolution in food, biomedical and health sciences, Bagchi, D., Bagchi, M., Moriyama, H., Shahidi, F. (eds), John Wiley & Sons, pp. 383-398.

Petit, A.-N., Fontaine, F., Vatsa, P., Clément, C., & Vaillant-Gaveau, N. (2012). Fungicide impacts on photosynthesis in crop plants. Photosynth. Res, 111(3), 315-326.

Prudent, M., Salon, C., Souleimanov, A., Emery, R.N., & Smith, D.L. (2015). Soybean is less impacted by water stress using Bradyrhizobium japonicum and thuricin-17 from Bacillus thuringiensis. Agron. Sustain. Dev, 35(2), 749-757.

Rad, F., Mohsenifar, A., Tabatabaei, M., Safarnejad, M., Shahryari, F., Safarpour, H., Foroutan, A., Mardi, M., Davoudi, D., & Fotokian, M. (2012). Detection of Candidatus phytoplasma aurantifolia with a quantum dots FRET-based biosensor. Plant Pathol. J, 94, 525-534.

Radhakrishnan, R., Alqarawi, A.A., & Abd_Allah, E.F. (2018). Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol. Environ. Saf, 158, 131-138.

Reed, M., Glick, B.R., & Gupta, V. (2013). Applications of plant growth-promoting bacteria for plant and soil systems. Applications of microbial engineering. Taylor and Francis, Enfield, 181-229.

Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front. Microbiol, 7, 1785.

Rodríguez, J., Martín, M.J., Ruiz, M.A., & Clares, B. (2016). Current encapsulation strategies for bioactive oils: from alimentary to pharmaceutical perspectives. Food Res. Int, 83, 41-59.

Rojas-Sánchez, B., Guzmán-Guzmán, P., Morales-Cedeño, L.R., Orozco-Mosqueda, M.d.C., Saucedo-Martínez, B.C., Sánchez-Yáñez, J.M., Fadiji, A.E., Babalola, O.O., Glick, B.R., & Santoyo, G. (2022). Bioencapsulation of microbial inoculants: Mechanisms, formulation types and application techniques. Appl. Biosci, 1(2), 198-220.

Rosier, A., Medeiros, F.H., & Bais, H.P. (2018). Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil, 428(1-2), 35-55.

Rubin, R.L., van Groenigen, K.J., & Hungate, B.A. (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil, 416(1-2), 309-323.

Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci. Hortic, 196, 124-134.

Ryan, R.P., An, S.-q., Allan, J.H., McCarthy, Y., & Dow, J.M. (2015). The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathogens, 11(7), e1004986.

Samanta, P., & Mandal, A. (2017). Effect of nanoparticles on biodiversity of soil and water microorganism community. J. Tissue Sci. Eng. 8, 196.

Schikora, A., Schenk, S.T., & Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol. Biol, 90(6), 605-612.

Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., & Mathimaran, N. (2018). Improving crop yield and nutrient use efficiency via biofertilization—a global meta-analysis. Front. Plant Sci, 8, 2204.

Seneviratne, G., Weerasekara, M., Kumaresan, D., & Zavahir, J. (2017). Microbial signaling in plant—microbe interactions and its role on sustainability of agroecosystems. AgroEnviron. Sustain, 1, 1-17.

Shabbir, R.N., Ali, H., Nawaz, F., Hussain, S., Areeb, A., Sarwar, N., & Ahmad, S. (2019). Use of biofertilizers for sustainable crop production. In: Agronomic crops, Hasanuzzaman, M. (ed), Springer, Singapore, pp. 149-162.

Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut, 197(1), 143-148.

Shukla, S.K., Kumar, R., Mishra, R.K., Pandey, A., Pathak, A., Zaidi, M., Srivastava, S.K., & Dikshit, A. (2015). Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): a step toward development of nano-biofertilizers. Nanotechnol. Rev, 4(5), 439-448.

Simonin, M., & Richaume, A. (2015). Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ. Sci. Pollut. Res, 22(18), 13710-13723.

Singh, A., Singh, N., Hussain, I., Singh, H., & Singh, S. (2015). Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int. J. Pharm. Sci. Invent, 4(8), 25-40.

Singh, J., Vishwakarma, K., Ramawat, N., Rai, P., Singh, V.K., Mishra, R.K., Kumar, V., Tripathi, D.K., & Sharma, S. (2019). Nanomaterials and microbes’ interactions: a contemporary overview. 3 Biotech, 9(3), 1-14.

Singhal, B., & Rana, S. (2019). Nanosensors in food safety: current status, role, and future perspectives. In: Nanotechnology and nanomaterial applications in food, health, and biomedical sciences, Verma, D.K., Goya, M.R., Suleria, H.A.R. (eds), Apple Academic Press, Boca Raton, pp. 249-292.

Someya, N., Kubota, M., Takeuchi, K., Unno, Y., Sakuraoka, R., & Morohoshi, T. (2020). Diversity of antibiotic biosynthesis gene-possessing rhizospheric fluorescent Pseudomonads in Japan and their biocontrol efficacy. Microbes Environ, 35(2), ME19155.

Subrahmanyam, G., Kumar, A., Sandilya, S.P., Chutia, M., & Yadav, A.N. (2020). Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Plant microbiomes for sustainable agriculture, Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds), Springer, Cham, pp. 1-52.

Suresh, A., & Abraham, J. (2019). Harnessing the microbial interactions in rhizosphere and microbiome for sustainable agriculture. In: Microbial interventions in agriculture and environment, Singh, D., Gupta, V., Prabha, R. (eds), Springer, Singapore, pp. 497-515.

Tripathi, A.D., Mishra, R., Maurya, K.K., Singh, R.B., & Wilson, D.W. (2019). Estimates for world population and global food availability for global health. In: The role of functional food security in global health, Singh, R. B., Watson, R.R., Takahashi, T. (eds), Academic Press, pp. 3-24.

Trivedi, P., Leach, J.E., Tringe, S.G., Sa, T., & Singh, B.K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol, 18(11), 607-621.

Tsukanova, K., Meyer, J., & Bibikova, T. (2017). Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. S. Afr. J. Bot, 113, 91-102.

Vaid, S.K., Srivastava, P.C., Pachauri, S.P., Sharma, A., Rawat, D., Shankhadhar, S.C., & Shukla, A.K. (2020). Effective zinc mobilization to rice grains using rhizobacterial consortium. Isr. J. Plant Sci, 1, 1-13.

Verma, P.P., Shelake, R.M., Das, S., Sharma, P., & Kim, J.-Y. (2019). Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. In: Microbial interventions in agriculture and environment, Singh, D., Gupta, V., Prabha, R. (eds), Springer, Singapore, pp. 281-311.

Wang, J., Li, R., Zhang, H., Wei, G., & Li, Z. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiol, 20(1), 1-12.

Wenz, J., Davis, J.G., & Storteboom, H. (2019). Influence of light on endogenous phytohormone concentrations of a nitrogen-fixing Anabaena sp. cyanobacterium culture in open raceways for use as fertilizer for horticultural crops. J. Appl. Phycol, 31(6), 3371-3384.

Wilkinson, S.W., Magerøy, M.H., López Sánchez, A., Smith, L.M., Furci, L., Cotton, T.A., Krokene, P., & Ton, J. (2019). Surviving in a hostile world: plant strategies to resist pests and diseases. Annu. Rev. Phytopathol, 57, 505-529.

Win, T.T., Barone, G.D., Secundo, F., & Fu, P. (2018). Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind. Biotechnol, 14(4), 203-211.

Win, T.T., Bo, B., Malec, P., Fu, P. (2021). The effect of a consortium of Penicillium sp. and Bacillus spp. in suppressing banana fungal diseases caused by Fusarium sp. and Alternaria sp. J. Appl. Microbiol, 131(4), 1890-1908.

Yadav, A., Kon, K., Kratosova, G., Duran, N., Ingle, A.P., & Rai, M. (2015). Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol. Lett, 37(11), 2099-2120.

Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep, 10(1), 1-11.

Zhang, F., & Smith, D.L. (1995). Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean at suboptimal root zone temperatures. Plant Physiol, 108(3), 961-968.

Zhao, S., Zhou, N., Zhao, Z.-Y., Zhang, K., Wu, G.-H., & Tian, C.-Y. (2016). Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr. Microbiol, 73(4), 574-581.

Zhou, C., Ma, Z., Zhu, L., Xiao, X., Xie, Y., Zhu, J., & Wang, J. (2016). Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance. Int. J. Mol. Sci, 17(6), 976.

Zhou, N., Zhao, S., & Tian, C.-Y. (2017). Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol. Lett, 364(11), fnx091.

Zhu, J., Tan, T., Shen, A., Yang, X., Yu, Y., Gao, C., Li, Z., Cheng, Y., Chen, J., & Guo, L. (2020). Biocontrol potential of Bacillus subtilis IBFCBF-4 against Fusarium wilt of watermelon. Plant Pathol. J, 102, 443-441.

Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N.A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: advantages and limitations. Plant Sci, 289, 110270.

Downloads

Published

2024-06-27

Issue

Section

Review