Phylogenetic analyses of the proteins involved in encapsulation signaling pathways in ants

Encapsulation pathways in ants

Authors

  • Kincső Orbán-Bakk Hungarian Department of Biology and Ecology, Babeș-Bolyai University, 400006 Cluj-Napoca, Clinicilor st. 5-7, Romania https://orcid.org/0000-0001-5863-1727
  • Enikő Csata Institute for Zoology, University of Regensburg, Universitätsstraße 31, D‐93040 Regensburg, Germany https://orcid.org/0000-0003-2564-9706
  • Bálint Markó Hungarian Department of Biology and Ecology, Babeș-Bolyai University, 400006 Cluj-Napoca, Clinicilor st. 5-7, Romania; Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania https://orcid.org/0000-0001-6039-8231
  • Ferencz Kósa Hungarian Department of Biology and Ecology, Babeș-Bolyai University, 400006 Cluj-Napoca, Clinicilor st. 5-7, Romania https://orcid.org/0000-0002-2921-2379

DOI:

https://doi.org/10.24193/subbbiol.2023.1.05

Keywords:

eusociality, evolution, immune response, innate immunity, insects, social immunity

Abstract

One of the major evolutionary transitions is the shift from solitary to social lifestyle, which involved a plethora of behavioral and physiological changes in social entities. Group living has several advantages as the evolution of collective defense mechanisms. It may also affect the individual immune system either due to the efficiency of social immune defenses or because of the high transmission frequency of pathogens. Individual defense consists of the innate and acquired immune components. In insects, there are two signaling pathways (Toll and Jak/Stat) that result in the expression of specific immune genes, which, in their turn, encode peptides, proteins and activate innate immune responses like encapsulation. The main aim of our study was to verify whether transition to eusocial lifestyle is reflected in proteins involved in immune responses. We carried out phylogenetic analyses of 15 proteins involved in encapsulation signaling pathways in ants. We also included four other social insect groups, bees, sweat bees, social wasps, and termites, and three solitary insect groups, as fruit flies, braconid wasps, and megachilid bees. Ants grouped separately from other insect groups in most cases, however, there were some notable exceptions mostly in the case of pattern recognition proteins, probably correlating with differences in potential pathogens. No major differences were revealed though between solitary and social insects with respect to proteins involved in encapsulation.

References

Akira, S. (2009). Innate immunity to pathogens: diversity in receptors for microbial recognition. Immunol. Rev., 227, 5–8. https://doi.org/10.1111/j.1600-065X.2008.00739.x

Altenhoff, A. M., Train, C. M., Gilbert, K. J., Mediratta, I., Mendes de Farias, T., Moi, D., Nevers, Y., Radoykova, S. H., Rossier, V., Vesztrocy, A. W., Glover, N. M., & Dessimoz, C. (2021). OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res., 49(D1), D373-D379. https://doi.org/10.1093/nar/gkaa1007

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17), 3389–3402. https://doi.org/10.1093/nar/25.17.3389

Apic, G., Gough, J., & Teichmann, S. A. (2001). An insight into domain combinations. J. Bioinform., 17(1), 83–89. https://doi.org/10.1093/bioinformatics/17.suppl_1.S83

Ayres, K. L., Talukder, Y., & Breuer, J. (2010). Humoral immunity following chickenpox is influenced by geography and ethnicity. J. Infect., 61(3), 244–251. https://doi.org/10.1016/j.jinf.2010.06.012

Bechsgaard, J., Vanthournout, B., Funch, P., Vestbo, S., Gibbs, R. A., Richards, S., Sanggaard, K. W., Enghild, J. J., & Bilde, T. (2016). Comparative genomic study of arachnid immune systems indicates loss of βGRPs and the IMD pathway. J. Evol. Biol., 29(2), 277–291. https://doi.org/10.1111/jeb.12780

Broderick, N. A., Welchman, D. P., & Lemaitre, B. (2009). Recognition and response to microbial infection in Drosophila. OUP, 13–33. https://doi.org/10.1098/rstb.2015.0295

Carton, Y., Frey, F., & Nappi, A. J. (2009). Parasite-induced changes in nitric oxide levels in Drosophila Paramelanica. J. Parasitol., 95(5), 1134–1141. https://doi.org/10.1645/GE-2091.1

Castella, G., Chapuisat, M., More, & Y., Christe, P. (2008). The presence of conifer resin decreases the use of the immune system in wood ants. Ecol. Entomol., 33(3), 408–412. https://doi.org/10.1111/j.1365-2311.2007.00983.x

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol., 17(4), 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Chang, J. M., Tommaso, P. D., & Notredame, C. (2014). TCS: A new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction. Mol. Biol. Evol., 31(6), 1625–1637. https://doi.org/10.1093/molbev/msu117

Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J. E. Jr, & Kuriyan, J. (1998). Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell, 93(5), 827–39.

Chevenet, F., Brun, C., Bañuls, A., Jacq, B., & Christen, R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform., 7, 439. https://doi.org/10.1186/1471-2105-7-439

Cotter, S. C., & Kilner, R. M. (2010). Personal immunity versus social immunity. Behav. Ecol., 21(4), 663–668. https://doi.org/10.1093/beheco/arq070

Cremer, S., Armitage, S. A. O., & Schmid-Hempel, P. (2007). Social Immunity. Curr. Biol., 17, 693–702. https://doi.org/10.1016/j.cub.2007.06.008

Cremer, S., & Sixt, M. (2009). Analogies in the evolution of individual and social immunity. R. Soc., 364, 129–142. https://doi.org/10.1098/rstb.2008.0166

Csata, E., Czekes, ZS., Erős, K., Német, E., Hughes, M., Csősz, S., & Markó, B. (2013). Comprehensive survey of Romanian myrmecoparasitic fungi: new species, biology and distribution. The North-west. J. Zool., 9(1), 23–29.

Csata, E., Erős, K., & Markó, B. (2014). Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. J. Insect Soc., 61, 247–252. https://doi.org/10.1007/s00040-014-0349-3

Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J., & Markó, B. (2017). The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol., 98, 167–172. https://doi.org/10.1016/j.jinsphys.2017.01.004

Csata, E., Timuş, N., Witek, M., Casacci, L. P., Lucas, C., Bagnères, A. G., Sztencel-Jabłonka, A., Barbero, F., Bonelli, S., Rákosy, L., & Markó, B. (2017). Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep., 7, 46323. https://doi.org/10.1038/srep46323

Csata, E., Billen, J., Bernadou, A., Heinze, J., & Markó, B. (2018). Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). J. Insect Soc., 65, 503–506. https://doi.org/10.1007/s00040-018-0628-5

Csata, E., Casacci, L. P., Ruther, J., Bernadou, A., Heinze, J., & Markó, B. (2023). Non-lethal fungal infection could reduce aggression towards strangers in ants. Comm. Biol., DOI: 10.1038/s42003-023-04541-7

Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E., & Báthori, F. (2021). Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep., 11(1), 1–9. https://doi.org/10.1038/s41598-021-93583-0

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., & Gascuel, O. (2008). Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res., 36, W465–W469. https://doi.org/10.1093/nar/gkn180

Dubovskiy, I. M., Kryukova, N. A., Glupov, V. V., & Ratcliffe, N. A. (2016). Encapsulation and nodulation in insects. Inf. Syst., 13, 229–246. https://doi.org/10.25431/1824-307X/isj.v13i1.229-246

Espadaler, X., & Santamaria, S. (2012). Ecto-and endoparasitic fungi on ants from the Holarctic region. Psyche: A J. Entomol., 2012. https://doi.org/10.1155/2012/168478

Filipe, J. F., Herrera, V., Curone, G., Vigo, D., & Riva, F. (2020). Floods, hurricanes, and other catastrophes: a challenge for the immune system of livestock and other animals. Front. Vet. Sci., 7, 16. https://doi.org/10.3389/fvets.2020.00016.

Flemming, A. (2017). Mechanism of adaptive immunity found in the fruit fly. Nat. Rev. Immunol., 17(5), 278–279.

Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol., 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010

Hughes, D. P., Araujo, J. P. M., Loreto, R. G., Quevillo, L., de Bekker, C., & Evans, H. C. (2016). From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv. Genet., 94, 437–469. https://doi.org/10.1016/bs.adgen.2016.01.004

Inbaraj, S., Sejian, V., Bagath, M., & Bhatta, R. (2016). Impact of heat stress on immune responses of livestock: a review. J. Trop. Agric., 39(4), 459–482.

Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunobiology. 5th Ed. Garland Science (New York).

Jin, Y., Hu, Y., Han, D., & Wang, M. (2011). Chronic heat stress weakened the innate immunity and increased the virulence of highly pathogenic avian influenza virus H5N1 in mice. J. biotechnol. biomed., 10. https://doi.org/10.1155/2011/367846

Khush, R. S., Leulier, F., & Lemaitre, B. (2001). Drosophila immunity: two paths to NF-kappaB. Trends Immunol., 22, 260–264. https://doi.org/10.1016/S1471-4906(01)01887-7

Kisseleva, T., Bhattacharya, S., Braunstein, J., & Schindler, C. W. (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 285(1-2), 1–24. https://doi.org/10.1016/S0378-1119(02)00398-0

Konrad, M., Vyleta, M. L., Theis, F. J., Stock, M., Tragust, S., Klatt, M., Drescher, V., Marr, C., Ugelvig, L. V., & Cremer, S. (2012). Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol., 10(4), e1001300. https://doi.org/10.1371/journal.pbio.1001300

Kurtz, J., & Armitage, S. A. O. (2006). Alternative adaptive immunity in invertebrates. Trends Immunol., 27(11), 493–496. https://doi.org/10.1016/j.it.2006.09.001

Kurtz, J., Wiesner, A., Götz, P., & Sauer, K. P. (2000). Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta: Mecoptera). DCI, 24(1), 1–12. https://doi.org/10.1016/S0145-305X(99)00057-9

Le, S. Q., & Gascuel, O. (2008). An improved general amino acid replacement matrix. MBE, 25(7), 1307–1320. https://doi.org/10.1093/molbev/msn067

Lobato, E., Doutrelant, C., Melo, M., Reis, S., & Covas, R. (2017). Insularity effects on bird immune parameters: a comparison between island and mainland populations in West Africa. Ecol. Evol., 7(11), 3645–3656. https://doi.org/10.1002/ece3.2788

Madeira, F., Park, Y., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 47, W636–W641. https://doi.org/10.1093/nar/gkz268

Marchler-Bauer, A., & Bryant, S. H. (2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Res., 32, W327–W331. https://doi.org/10.1093/nar/gkh454

Marmaras, V. J., & Lampropoulou, M. (2009). Regulators and signalling in insect haemocyte immunity. Cell. Signal, 21, 186–195. https://doi.org/10.1016/j.cellsig.2008.08.014

Matso, K. D., & Beadell, J. S. (2010). Infection, immunity, and island adaptation in birds. In Morand, S., Krasnov, B. R. (Eds.) The biogeography of host-parasite interactions. OUP, 217–232.

Meunier, J. (2015). Social immunity and the evolution of group living in insects. Royal Soc., 370(1669), 20140102. https://doi.org/10.1098/rstb.2014.0102

Murray, P. J. (2007). The JAK-STAT signaling pathway: input and output integration. J. Immunol., 178(5), 2623–2629. https://doi.org/10.4049/jimmunol.178.5.2623

Nappi, A. J., & Ottaviani, E. (2000). Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays, 22, 469–480. https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.0.CO;2-4

Nappi, A. J., Vass, E., Frey, F., & Carton, Y. (1995). Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur. J. Cell Biol., 68(4), 450–456.

Petersen, T. E., Thøgersen, H. C., Skorstengaard, K., Vibe-Pedersen, K., Sahl, P., Sottrup-Jensen, L., & Magnusson, S. (1983). Partial primary structure of bovine plasma fibronectin: three types of internal homology. PNAS, 80(1), 137–41. https://doi.org/10.1073/pnas.80.1.137

Rolff, J., & Reynolds, S. E. (2009). Insect infection and immunity. OUP, 272.

Rosales, C. (2017). Cellular and molecular mechanisms of insect immunity. Insect Physiology and Ecology (Croatia).

Ruggieri, A., Anticoli, S., D'Ambrosio, A., Giordani, L., & Viora, M. (2016). The influence of sex and gender on immunity, infection and vaccination. Ann. Ist. Super. Sanita, 52(2), 198–204.

Sawai, M. V., Jia, H. P., Liu, L., Aseyev, V., Wiencek, J. M., McCray, Jr P. B., Ganz, T., Kearney, W. R., & Tack, B. F. (2001). The NMR structure of human b-defensin-2 reveals a novel alpha-helical segment. Biochem., 40, 3810–3816. https://doi.org/10.1021/bi002519d

Schaefer, M. H., Yang, J. S., Serrano, L., & Kiel, C. (2014). Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways. PLoS Comput. Biol., 10(6), e1003659. https://doi.org/10.1371/journal.pcbi.1003659

Schmid-Hempel, P. (1995). Parasites and social insects. Apidologie, 26(3), 255–271. https://doi.org/10.1051/apido:19950307

Schmidt, O., Theopold, U., & Strand, M. (2001). Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays, 23, 344–351. https://doi.org/10.1002/bies.1049

Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Stat Sci, 18(2), 256–267. http://www.jstor.org/stable/3182855

Stroeymeyt, N., Casillas-Pérez, B., & Cremer, S. (2014). Organisational immunity in social insects. Curr. Opin. Insect. Sci., 5, 1–15. https://doi.org/10.1016/j.cois.2014.09.001

Talavera, G., & Castreasana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol., 56(4), 564–577. https://doi.org/10.1080/10635150701472164

Verble, R. M., Meyer, A. D., Kleve, M. G., & Yanoviak, S. P. (2012). Exoskeletal thinning in Cephalotes atratus ants (Hymenoptera: Formicidae) parasitized by Myrmeconema neotropicum (Nematoda: Tetradonematidae). J. Parasitol., 98, 226–228. https://doi.org/10.1645/GE-2847.1

Wang, X., Zhang, Y., Zhang, R., & Zhang, J. (2019). The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Curr. Opin. Insect. Sci., 33, 105–110. https://doi.org/10.1016/j.cois.2019.05.004

Ward, P. S. (2006). Ants. Curr. Biol., 16(5), 152. https://doi.org/10.1016/j.cub.2006.02.054

Wikelski, M., Foufopoulos, J., Vargas, H., & Snell, H. (2004). Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol. Soc., 9(1).

Yan, G., Severson, D. W., & Christensen, B. M. (1997). Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evol., 51(2), 441–450. https://doi.org/10.1111/j.1558-5646.1997.tb02431.x

Downloads

Published

2023-06-30

Issue

Section

Research article

Categories