Phylogenetic analyses of the proteins involved in encapsulation signaling pathways in ants

Encapsulation pathways in ants


  • Kincső Orbán-Bakk Hungarian Department of Biology and Ecology, Babeș-Bolyai University, 400006 Cluj-Napoca, Clinicilor st. 5-7, Romania
  • Enikő Csata Institute for Zoology, University of Regensburg, Universitätsstraße 31, D‐93040 Regensburg, Germany
  • Bálint Markó Hungarian Department of Biology and Ecology, Babeș-Bolyai University, 400006 Cluj-Napoca, Clinicilor st. 5-7, Romania; Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
  • Ferencz Kósa Hungarian Department of Biology and Ecology, Babeș-Bolyai University, 400006 Cluj-Napoca, Clinicilor st. 5-7, Romania



eusociality, evolution, immune response, innate immunity, insects, social immunity


One of the major evolutionary transitions is the shift from solitary to social lifestyle, which involved a plethora of behavioral and physiological changes in social entities. Group living has several advantages as the evolution of collective defense mechanisms. It may also affect the individual immune system either due to the efficiency of social immune defenses or because of the high transmission frequency of pathogens. Individual defense consists of the innate and acquired immune components. In insects, there are two signaling pathways (Toll and Jak/Stat) that result in the expression of specific immune genes, which, in their turn, encode peptides, proteins and activate innate immune responses like encapsulation. The main aim of our study was to verify whether transition to eusocial lifestyle is reflected in proteins involved in immune responses. We carried out phylogenetic analyses of 15 proteins involved in encapsulation signaling pathways in ants. We also included four other social insect groups, bees, sweat bees, social wasps, and termites, and three solitary insect groups, as fruit flies, braconid wasps, and megachilid bees. Ants grouped separately from other insect groups in most cases, however, there were some notable exceptions mostly in the case of pattern recognition proteins, probably correlating with differences in potential pathogens. No major differences were revealed though between solitary and social insects with respect to proteins involved in encapsulation.


Akira, S. (2009). Innate immunity to pathogens: diversity in receptors for microbial recognition. Immunol. Rev., 227, 5–8.

Altenhoff, A. M., Train, C. M., Gilbert, K. J., Mediratta, I., Mendes de Farias, T., Moi, D., Nevers, Y., Radoykova, S. H., Rossier, V., Vesztrocy, A. W., Glover, N. M., & Dessimoz, C. (2021). OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res., 49(D1), D373-D379.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17), 3389–3402.

Apic, G., Gough, J., & Teichmann, S. A. (2001). An insight into domain combinations. J. Bioinform., 17(1), 83–89.

Ayres, K. L., Talukder, Y., & Breuer, J. (2010). Humoral immunity following chickenpox is influenced by geography and ethnicity. J. Infect., 61(3), 244–251.

Bechsgaard, J., Vanthournout, B., Funch, P., Vestbo, S., Gibbs, R. A., Richards, S., Sanggaard, K. W., Enghild, J. J., & Bilde, T. (2016). Comparative genomic study of arachnid immune systems indicates loss of βGRPs and the IMD pathway. J. Evol. Biol., 29(2), 277–291.

Broderick, N. A., Welchman, D. P., & Lemaitre, B. (2009). Recognition and response to microbial infection in Drosophila. OUP, 13–33.

Carton, Y., Frey, F., & Nappi, A. J. (2009). Parasite-induced changes in nitric oxide levels in Drosophila Paramelanica. J. Parasitol., 95(5), 1134–1141.

Castella, G., Chapuisat, M., More, & Y., Christe, P. (2008). The presence of conifer resin decreases the use of the immune system in wood ants. Ecol. Entomol., 33(3), 408–412.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol., 17(4), 540–552.

Chang, J. M., Tommaso, P. D., & Notredame, C. (2014). TCS: A new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction. Mol. Biol. Evol., 31(6), 1625–1637.

Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J. E. Jr, & Kuriyan, J. (1998). Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell, 93(5), 827–39.

Chevenet, F., Brun, C., Bañuls, A., Jacq, B., & Christen, R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform., 7, 439.

Cotter, S. C., & Kilner, R. M. (2010). Personal immunity versus social immunity. Behav. Ecol., 21(4), 663–668.

Cremer, S., Armitage, S. A. O., & Schmid-Hempel, P. (2007). Social Immunity. Curr. Biol., 17, 693–702.

Cremer, S., & Sixt, M. (2009). Analogies in the evolution of individual and social immunity. R. Soc., 364, 129–142.

Csata, E., Czekes, ZS., Erős, K., Német, E., Hughes, M., Csősz, S., & Markó, B. (2013). Comprehensive survey of Romanian myrmecoparasitic fungi: new species, biology and distribution. The North-west. J. Zool., 9(1), 23–29.

Csata, E., Erős, K., & Markó, B. (2014). Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. J. Insect Soc., 61, 247–252.

Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J., & Markó, B. (2017). The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol., 98, 167–172.

Csata, E., Timuş, N., Witek, M., Casacci, L. P., Lucas, C., Bagnères, A. G., Sztencel-Jabłonka, A., Barbero, F., Bonelli, S., Rákosy, L., & Markó, B. (2017). Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep., 7, 46323.

Csata, E., Billen, J., Bernadou, A., Heinze, J., & Markó, B. (2018). Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). J. Insect Soc., 65, 503–506.

Csata, E., Casacci, L. P., Ruther, J., Bernadou, A., Heinze, J., & Markó, B. (2023). Non-lethal fungal infection could reduce aggression towards strangers in ants. Comm. Biol., DOI: 10.1038/s42003-023-04541-7

Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E., & Báthori, F. (2021). Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep., 11(1), 1–9.

Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V., Lescot, M., Claverie, J. M., & Gascuel, O. (2008). Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res., 36, W465–W469.

Dubovskiy, I. M., Kryukova, N. A., Glupov, V. V., & Ratcliffe, N. A. (2016). Encapsulation and nodulation in insects. Inf. Syst., 13, 229–246.

Espadaler, X., & Santamaria, S. (2012). Ecto-and endoparasitic fungi on ants from the Holarctic region. Psyche: A J. Entomol., 2012.

Filipe, J. F., Herrera, V., Curone, G., Vigo, D., & Riva, F. (2020). Floods, hurricanes, and other catastrophes: a challenge for the immune system of livestock and other animals. Front. Vet. Sci., 7, 16.

Flemming, A. (2017). Mechanism of adaptive immunity found in the fruit fly. Nat. Rev. Immunol., 17(5), 278–279.

Guindon, S., Dufayard, J., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol., 59(3), 307–321.

Hughes, D. P., Araujo, J. P. M., Loreto, R. G., Quevillo, L., de Bekker, C., & Evans, H. C. (2016). From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv. Genet., 94, 437–469.

Inbaraj, S., Sejian, V., Bagath, M., & Bhatta, R. (2016). Impact of heat stress on immune responses of livestock: a review. J. Trop. Agric., 39(4), 459–482.

Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2001). Immunobiology. 5th Ed. Garland Science (New York).

Jin, Y., Hu, Y., Han, D., & Wang, M. (2011). Chronic heat stress weakened the innate immunity and increased the virulence of highly pathogenic avian influenza virus H5N1 in mice. J. biotechnol. biomed., 10.

Khush, R. S., Leulier, F., & Lemaitre, B. (2001). Drosophila immunity: two paths to NF-kappaB. Trends Immunol., 22, 260–264.

Kisseleva, T., Bhattacharya, S., Braunstein, J., & Schindler, C. W. (2002). Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 285(1-2), 1–24.

Konrad, M., Vyleta, M. L., Theis, F. J., Stock, M., Tragust, S., Klatt, M., Drescher, V., Marr, C., Ugelvig, L. V., & Cremer, S. (2012). Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol., 10(4), e1001300.

Kurtz, J., & Armitage, S. A. O. (2006). Alternative adaptive immunity in invertebrates. Trends Immunol., 27(11), 493–496.

Kurtz, J., Wiesner, A., Götz, P., & Sauer, K. P. (2000). Gender differences and individual variation in the immune system of the scorpionfly Panorpa vulgaris (Insecta: Mecoptera). DCI, 24(1), 1–12.

Le, S. Q., & Gascuel, O. (2008). An improved general amino acid replacement matrix. MBE, 25(7), 1307–1320.

Lobato, E., Doutrelant, C., Melo, M., Reis, S., & Covas, R. (2017). Insularity effects on bird immune parameters: a comparison between island and mainland populations in West Africa. Ecol. Evol., 7(11), 3645–3656.

Madeira, F., Park, Y., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res., 47, W636–W641.

Marchler-Bauer, A., & Bryant, S. H. (2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Res., 32, W327–W331.

Marmaras, V. J., & Lampropoulou, M. (2009). Regulators and signalling in insect haemocyte immunity. Cell. Signal, 21, 186–195.

Matso, K. D., & Beadell, J. S. (2010). Infection, immunity, and island adaptation in birds. In Morand, S., Krasnov, B. R. (Eds.) The biogeography of host-parasite interactions. OUP, 217–232.

Meunier, J. (2015). Social immunity and the evolution of group living in insects. Royal Soc., 370(1669), 20140102.

Murray, P. J. (2007). The JAK-STAT signaling pathway: input and output integration. J. Immunol., 178(5), 2623–2629.

Nappi, A. J., & Ottaviani, E. (2000). Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays, 22, 469–480.<469::AID-BIES9>3.0.CO;2-4

Nappi, A. J., Vass, E., Frey, F., & Carton, Y. (1995). Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur. J. Cell Biol., 68(4), 450–456.

Petersen, T. E., Thøgersen, H. C., Skorstengaard, K., Vibe-Pedersen, K., Sahl, P., Sottrup-Jensen, L., & Magnusson, S. (1983). Partial primary structure of bovine plasma fibronectin: three types of internal homology. PNAS, 80(1), 137–41.

Rolff, J., & Reynolds, S. E. (2009). Insect infection and immunity. OUP, 272.

Rosales, C. (2017). Cellular and molecular mechanisms of insect immunity. Insect Physiology and Ecology (Croatia).

Ruggieri, A., Anticoli, S., D'Ambrosio, A., Giordani, L., & Viora, M. (2016). The influence of sex and gender on immunity, infection and vaccination. Ann. Ist. Super. Sanita, 52(2), 198–204.

Sawai, M. V., Jia, H. P., Liu, L., Aseyev, V., Wiencek, J. M., McCray, Jr P. B., Ganz, T., Kearney, W. R., & Tack, B. F. (2001). The NMR structure of human b-defensin-2 reveals a novel alpha-helical segment. Biochem., 40, 3810–3816.

Schaefer, M. H., Yang, J. S., Serrano, L., & Kiel, C. (2014). Protein conservation and variation suggest mechanisms of cell type-specific modulation of signaling pathways. PLoS Comput. Biol., 10(6), e1003659.

Schmid-Hempel, P. (1995). Parasites and social insects. Apidologie, 26(3), 255–271.

Schmidt, O., Theopold, U., & Strand, M. (2001). Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays, 23, 344–351.

Soltis, P. S., & Soltis, D. E. (2003). Applying the bootstrap in phylogeny reconstruction. Stat Sci, 18(2), 256–267.

Stroeymeyt, N., Casillas-Pérez, B., & Cremer, S. (2014). Organisational immunity in social insects. Curr. Opin. Insect. Sci., 5, 1–15.

Talavera, G., & Castreasana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol., 56(4), 564–577.

Verble, R. M., Meyer, A. D., Kleve, M. G., & Yanoviak, S. P. (2012). Exoskeletal thinning in Cephalotes atratus ants (Hymenoptera: Formicidae) parasitized by Myrmeconema neotropicum (Nematoda: Tetradonematidae). J. Parasitol., 98, 226–228.

Wang, X., Zhang, Y., Zhang, R., & Zhang, J. (2019). The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Curr. Opin. Insect. Sci., 33, 105–110.

Ward, P. S. (2006). Ants. Curr. Biol., 16(5), 152.

Wikelski, M., Foufopoulos, J., Vargas, H., & Snell, H. (2004). Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol. Soc., 9(1).

Yan, G., Severson, D. W., & Christensen, B. M. (1997). Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evol., 51(2), 441–450.






Regular articles