Screening for phenotypic and genotypic resistance to antibiotics in Gram positive pathogens

Authors

  • Anca FARKAS Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; Laboratory of Plant Biology, Genetics, Microbiology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania. *Corresponding author: anca.farkas@ubbcluj.ro https://orcid.org/0000-0003-0985-1461
  • Emma TARCO Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania.
  • Cornelia CRĂCIUNAŞ Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; Laboratory of Plant Biology, Genetics, Microbiology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Babeş-Bolyai University, Cluj-Napoca, Romania.
  • Brînduşa BOCOŞ National Public Health Institute – Regional Public Health Centre of Cluj, Cluj-Napoca, Romania.

DOI:

https://doi.org/10.24193/subbbiol.2017.2.08

Keywords:

AMR, MDR, ARG, Enterococcus spp., Staphylococcus spp., Streptococcus spp.

Abstract

Gram positive bacteria such as methicillin resistant Staphylococcus aureus, vancomycin resistant enterococci or multidrug resistant Streptococcus spp. are increasingly involved in severe infections with serious clinical consequences. The aim of this study is to investigate phenotypic and genotypic resistance traits in Gram positive pathogens isolated from clinical specimens in Cluj-Napoca, Romania. A total number of 31 Enterococcus spp., Staphylococcus spp. and Streptococcus spp. strains were subjected to antimicrobial susceptibility testing by disc diffusion, while the carriage of 26 antibiotic resistance genes and of class 1 integron was assessed by PCR. Bacterial pathogens included in this study were mostly susceptible to folate pathway inhibitors (100%), oxazolidinones (97%), fosfomycins (93%) and glycopeptides (92%). Enterococci, staphylococci and streptococci displayed high levels of phenotypic resistance to penicillins, tetracyclines and macrolides, a percentage of 42% being multidrug resistant. The strains under this study proved to be able to produce β-lactamase enzymes encoded by the TEM-1 gene and aminoglycoside modifying enzymes due to the carriage of aac(6’)-Ie-aph(2”) gene, to possess ribosomal protection mechanisms for macrolide and tetracycline resistance associated with ermB, ermC and tet(M) genes and to bear efflux genes tet(A), tet(B), tet(C) ant tet(L). Class 1 integron integrase was detected in 16% of the isolates, but no significant correlations were found between the carriage of intI1 gene and the phenotypic or genotypic resistance among the Gram positive pathogens investigated.

Farcas et al (PDF)

References

Anderson, A.C., Andisha, H., Hellwig, E., Jonas, D., Vach, K., Al-Ahmad, A. (2017) Antibiotic resistance genes and antibiotic susceptibility of oral Enterococcus faecalis isolates compared to isolates from hospitalized patients and food, In: Advances in experimental medicine and biology, Cohen, I. R., Lajtha, A., Lambris, J. D., Paoletti, R., Rezaei, N. (eds.), Springer, Boston, pp. 1-16

Attman, E., Aittoniemi, J., Sinisalo, M., Vuento, R., Lyytikainen, O., Karki, T., Syrjanen, J., Huttunen, R. (2015) Etiology, clinical course and outcome of healthcare-associated bloodstream infections in patients with hematological malignancies: a retrospective study of 350 patients in a Finnish tertiary care hospital, Leukemia and Lymphoma 56(12), 3370-3377

Behnood, A., Farajnia, S., Moaddab, S.R., Ahdi-Khosroshahi, A., Katayounzadeh, A. (2015) Prevalence of aac (6′)-Ie-aph (2′′)-Ia resistance gene and its linkage to Tn5281 in Enterococcus faecalis and Enterococcus faecium isolates from Tabriz hospitals. Iranian Journal of Microbiology 3, 203-208

CLSI (2015) Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement M100-S25, Clinical and Laboratory Standards Institute, Wayne, pp. 238

Crăciunaş, C., Butiuc-Keul, A., Flonta, M., Almaş, A., Brad, A., Sigarteu, M. (2010) Development of a PCR assay for identification of antibiotic resistance determinants at Staphylococcus aureus, Analele Universității din Oradea, Fascicula Biologie 17(2), 248-252

Cornaglia, G. (2009) Fighting infections due to multidrug-resistant Gram-positive pathogens, Clinical Microbiology and Infection 15(3):209-211

EUCAST (2014) Antimicrobial susceptibility testing. EUCAST disk diffusion method. Stockholm: European Committee on Antimicrobial Susceptibility Testing

Farkas, A. (2016) Antibiotic susceptibility testing by disc diffusion method, In: Methodological guide for monitoring antibiotics and antibiotic resistance in the environment, Coman, C. (ed.), Accent Publisher, Cluj-Napoca, pp. 253-276

Flonta, M., Lupşe, M., Crăciunaş, C., Almaş, A., Cârstina, D. (2011) Ertapenem resistance among extended-spectrum-β-lactamase producing Klebsiella pneumoniae isolates, Therapeutica 15(2), 121-125

Flores-Mireles, A.L., Walker, J.N., Caparon, M., Hultgren, S.J. (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options, Nature Reviews Microbiology 13, 1-16

Kresken, M., Henrichfreise, B., Bagel, S., Brauers, J., Wiedemann, B. (2004) High Prevalence of the ermB gene among erythromycin-resistant Streptococcus pneumoniae isolates in Germany during the winter of 2000-2001 and in vitro activity of telithromycin, Antimicrobial Agents and Chemotherapy 48(8), 3193-3195

Leclercq, R. (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications, Clinical Infectious Diseases 34,482–492

Lode, H. M. (2009) Clinical impact of antibiotic-resistant Gram-positive pathogens. Clinical Microbiology and Infection 15(3):212-217

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A.,Weber, J.T., Monnet, D.L. (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance, Clinical Microbiology and Infection 18, 268–281

Paterson, D.L., Bonomo, R.A. (2005) Extended-spectrum β-lactamases: a clinical update, Clinical Microbiology Reviews 18, 657-686

Pîrvănescu, H., Bălăşoiu, M., Ciurea, M.E., Bălăşoiu, A.T., Mănescu, M. (2014) Wound infections with multi-drug resistant bacteria, Chirurgia 109, 73-79

Reinert, R.R., Filimonova, O.Y., Al-Lahham, A., Grudinina, S.A., Ilina, E.N., Weigel, L.M., Sidorenko, S.V. (2008) Mechanisms of macrolide resistance among Streptococcus pneumoniae isolates from Russia, Antimicrobial Agents and Chemotherapy 52(6), 2260-2262

Rice, L.B. (2006) Antimicrobial resistance in Gram-positive bacteria, American Journal of Medicine 119(6), S11-19

Roberts, M.C. (2012) Mechanisms of bacterial antibiotic resistance and lessons learned from environmental tetracycline resistant bacteria, In: Antibiotic resistance in the environment, Keen, P., Montforts, M. (eds.), John Wiley & Sons, Hoboken, pp. 93–121.

Roberts, M.C., Schwarz, S. (2015) Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans, Journal of Environmental Quality 45(2), 576-592

Simon, L.M., Junie, L.M., Homodorean, D. (2010) Antimicrobial resistance of staphylococcal strains isolated from various pathological products. Applied Medical Informatics 27(4), 74-80

Schmitz, F.J., Krey, A., Sadurski, R., Verhoef, J., Milatovic, D., Fluit, A.C. (2001) Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates, Journal of Antimicrobial Chemotherapy 47(2), 239–240

Stoian, A.C., Dumitrescu, F., Niculescu, I., Iocu, C., Marinescu, L., Stănescu, M., Stoian, G.R. (2013) Gram positive bacterial infections in immunocompromised patients with HIV infection, BMC Infectious Diseases 13(S1), P30

Székely, E., Damjanova, I., Jánvári, L., Vas, K.E., Molnár, S., Bilca, D.V., Lőrinczi, L.K., Tóth, A. (2013) First description of bla NDM-1, bla OXA-48, bla OXA-181 producing Enterobacteriaceae strains in Romania, International Journal of Medical Microbiology 303(8), 697-700

Zaiontz, C. (2015) Real Statistics Using Excel, www.real-statistics.com

Published

2017-12-20

Issue

Section

Research article